Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 51 số đó đều âm và tích 4 số đó âm .
=> Mâu thuẫn với đề bài
=> Tồn tại ít nhất 1 số dương
Lấy số dương đó ra , còn lại 50 số , chia thành 12 nhóm.
có 4 số bất kì có tổng đều âm
Vậy 51 số đó đều dương.
giả sử 2015 số đã cho là:
a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015
Vì tích 3 số bất kỳ luôn luôn dương
nên trong dãy số có nhiều nhất 2 số âm
\(\vec{ }\)
a1;a2 <0
ta có: a1.a2014.a2015 <0
mà đề cho:a1.a2014.a2015>0
\(\vec{ }\)
a1;a2 không thể âm
Do vậy 2015 số đã cho phải là số dương
Gọi các số cần tìm theo thứ tự từ bé -> lớn là a1; a2; a3; ...; a100
- Ta có a1 . a2 . a100 < 0
=> Cả 3 số cùng âm
hoặc a1 âm và a2; a100 dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+ a2 là số dương => a3; a4; ....; a100 đều là số dương ( vì đã từ bé => lớn ) => mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp **** ( a100 là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp
=> tích 100 số trên là số dương
- Gọi các số đó là : \(x_1,x_2.....x_{2021}\)
Ta có : \(\left\{{}\begin{matrix}x_1.x_2.x_3>0\\......\\\end{matrix}\right.\)
- Để \(x_1.x_2.x_3>0\) thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>0\\x2< 0\\x3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x1< 0\\x2>0\\x3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x1>0\\x2< 0\\x3< 0\end{matrix}\right.\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x1>0\\x2>0\\x3>0\end{matrix}\right.\)
CMTT => Trường hợp thỏa mãn là : \(\left\{{}\begin{matrix}x1>0\\....\\x2021>0\end{matrix}\right.\)
Vậy ....
Phản chứng: gọi các số hữu tỉ là \(a_1;a_2;a_3;a_4...\)
Do tích các số đều dương nên tất cả chúng đều khác 0
Nếu tồn tại 1 số trong đó là số âm, giả sử \(a_1< 0\)
Do \(a_1.\left(a_2.a_3\right)>0\Rightarrow a_2a_3< 0\) (1)
\(\left(a_2a_3\right)a_4>0\) mà \(a_2a_3< 0\Rightarrow a_4< 0\)
\(\Rightarrow a_1a_4>0\)
\(a_1a_2a_4>0\) mà \(a_1a_4>0\Rightarrow a_2>0\) (2)
\(a_1a_3a_4>0\) mà \(a_1a_4>0\Rightarrow a_3>0\) (3)
(2); (3) \(\Rightarrow a_2a_3>0\) mâu thuẫn với (1)
Vậy điều giả sử là sai hay 2021 số đó đều dương
Lời giải:
Xét các số \(a_1,a_2,....,a_{51}\)
Ta có \(a_1a_2....a_{51}=(a_1a_2a_3)(a_4a_5....a_{51})>0\)
Vì cứ tích $4$ số bất kỳ đều dương nên tích của \(48\) số từ \(a_4\rightarrow a_{51}\) dương, do đó \(a_1a_2a_3>0\)
Mà theo đk đề bài thì \(a_1a_2a_3a_j>0 \) \((j=\overline{4;51})\) nên \(a_4,a_5,...,a_{51}>0\)
Khi đó \(a_4a_5a_6>0\) mà \(a_4a_5a_6a_1,a_4a_5a_6a_2,a_4a_5a_6a_1>0\) nên \(a_1,a_2,a_3>0\)
Ta có đpcm.
Cảm ơn.