Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 51 số đó đều âm và tích 4 số đó âm .
=> Mâu thuẫn với đề bài
=> Tồn tại ít nhất 1 số dương
Lấy số dương đó ra , còn lại 50 số , chia thành 12 nhóm.
có 4 số bất kì có tổng đều âm
Vậy 51 số đó đều dương.
giả sử 2015 số đã cho là:
a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015
Vì tích 3 số bất kỳ luôn luôn dương
nên trong dãy số có nhiều nhất 2 số âm
\(\vec{ }\)
a1;a2 <0
ta có: a1.a2014.a2015 <0
mà đề cho:a1.a2014.a2015>0
\(\vec{ }\)
a1;a2 không thể âm
Do vậy 2015 số đã cho phải là số dương
Gọi các số cần tìm theo thứ tự từ bé -> lớn là a1; a2; a3; ...; a100
- Ta có a1 . a2 . a100 < 0
=> Cả 3 số cùng âm
hoặc a1 âm và a2; a100 dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+ a2 là số dương => a3; a4; ....; a100 đều là số dương ( vì đã từ bé => lớn ) => mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp **** ( a100 là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp
=> tích 100 số trên là số dương
iả sử 2015 số đã cho là:
a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015
Vì tích 3 số bất kỳ luôn luôn dương
nên trong dãy số có nhiều nhất 2 số âm
$\vec{ }$→
a1;a2 <0
ta có: a1.a2014.a2015 <0
mà đề cho:a1.a2014.a2015>0
$\vec{ }$→
a1;a2 không thể âm
Do vậy 2015 số đã cho phải là số dương
giả sử 2015 số đã cho là:
a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015
Vì tích 3 số bất kỳ luôn luôn dương
nên trong dãy số có nhiều nhất 2 số âm
$\vec{ }$→
a1;a2 <0
ta có: a1.a2014.a2015 <0
mà đề cho:a1.a2014.a2015>0
$\vec{ }$→
a1;a2 không thể âm
Do vậy 2015 số đã cho phải là số dương
Lời giải:
Xét các số \(a_1,a_2,....,a_{51}\)
Ta có \(a_1a_2....a_{51}=(a_1a_2a_3)(a_4a_5....a_{51})>0\)
Vì cứ tích $4$ số bất kỳ đều dương nên tích của \(48\) số từ \(a_4\rightarrow a_{51}\) dương, do đó \(a_1a_2a_3>0\)
Mà theo đk đề bài thì \(a_1a_2a_3a_j>0 \) \((j=\overline{4;51})\) nên \(a_4,a_5,...,a_{51}>0\)
Khi đó \(a_4a_5a_6>0\) mà \(a_4a_5a_6a_1,a_4a_5a_6a_2,a_4a_5a_6a_1>0\) nên \(a_1,a_2,a_3>0\)
Ta có đpcm.
Cảm ơn.