1. Rút gọn các biểu thức sau:
a, \(\dfrac{1}{4}\sqrt{180}+\sqrt{20}-\sqrt{45}+5\) ; b,\(3\sqrt{\dfrac{1}{3}}+\dfrac{1}{4}\sqrt{48}-2\sqrt{3}\)
c,\(\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}\) ; d,\(\sqrt{\dfrac{a}{1+2b+b^2}}.\sqrt{\dfrac{4a+8ab+4ab^2}{225}}\)
2. Chứng minh các hằng đẳng thức sau:
a, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
b,\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=1\)...
Đọc tiếp
1. Rút gọn các biểu thức sau:
a, \(\dfrac{1}{4}\sqrt{180}+\sqrt{20}-\sqrt{45}+5\) ; b,\(3\sqrt{\dfrac{1}{3}}+\dfrac{1}{4}\sqrt{48}-2\sqrt{3}\)
c,\(\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}\) ; d,\(\sqrt{\dfrac{a}{1+2b+b^2}}.\sqrt{\dfrac{4a+8ab+4ab^2}{225}}\)
2. Chứng minh các hằng đẳng thức sau:
a, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
b,\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=1\) với a≥0, b≤0, a≠ b
c, \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với a>0, a≠1
3. Chứng minh rằng giá trị của biểu thức M không phụ thuộc vào a:
M= \(\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right)\left(1+\dfrac{1}{a}\right)\) với a >0; a≠ 1
Giúp em với e cần gấp lắm ạ
a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)
\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)
b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)