a) 11^n+2+12^n+1 chia hết cho 133
b) 5^n+2+26*5^n+8^2n+1 chia hết cho 59
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc
Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)
\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)
\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)
Vì \(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133
Mà 11n.133 cũng chia hết cho 133
=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)
b,\(5^{n+2}+26.5^n+8^{2n+1}\)
\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)
\(=59.5^n+8.\left(64^n-5^n\right)\)
Vì \(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59
Mà 59.5n cũng chia hết cho 59
=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)
a, 11n+2+122n+1
= 11n.121+12.122n
= 11n.(133-12)+12.122n
= 11n.133-11nn .12+12.122n
=12.(144n-11n)+11n. 133
Có 144nn-11n \(⋮\)144-11=133
11n.133\(⋮\)133
=> dpcm
Lời giải:
a)
\(A=11^{n+2}+12^{2n+1}\)
Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)
Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)
\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)
Vậy \(A\vdots 133\) (đpcm)
b) Đề bài không rõ
c)
Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)
\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)
\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)
Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)
a, 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> 7 . 52n + 12 . 6n ⋮ 19
b, 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> 11n + 2 + 122n + 1 ⋮ 133
Bài làm :
a) 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> Điều phải chứng minh
b) 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> Điều phải chứng minh
a) \(11^{n+2}+12^{2n+1}\)
= \(11^n.121+12^{2n}.12\)
= \(11^n.\left(133-12\right)+144^n.12\)
= \(11^n.\left(133-12\right)+\left(133+11\right)^n.12\) (1)
Ta có: \(\left(133+11\right)^n=133^n+133^{n-1}.11+...+133.11^{n-1}+11^n⋮133\)(vì mỗi số hạng đều chứa thừa số 133)
Ta kí hiệu số chia hết cho 133 là B (133).
Do đó \(\left(133+11\right)^n=B\left(133\right)+11^n\)
Thay vào (1), ta được:
\(11^n.133-11^n.12+\left[B\left(133\right)+11^n\right].12\)
= \(B\left(133\right)-11^n.12+B\left(133\right)+11^n.12\)
= B (133)
Vậy: \(11^{n+2}+12^{2n+1}⋮133\).
b) \(5^{n+2}+26.5^n+8^{2n+1}\)
= \(5^n.25+26.5^n+8^{2n}.8\)
= \(5^n.\left(25+26\right)+64^n.8\)
= \(5^n.\left(59-8\right)+\left(59+5\right)^n.8\) (1)
Ta có: \(\left(59+5\right)^n=59^n+59^{n-1}.5+...+59.5^{n-1}+5^n⋮59\)(vì mỗi số hạng đều chứa thừa số 59)
Ta kí hiệu số chia hết cho 59 là B (59).
Do đó \(\left(59+5\right)^n=B\left(59\right)+5^n\)
Thay vào (1), ta được:
\(5^n.59-5^n.8+\left[B\left(59\right)+5^n\right].8\)
= \(B\left(59\right)-5^n.8+B\left(59\right)+5^n.8\)
= B (59)
Vậy: \(5^{n+2}+26.5^n+8^{2n+1}⋮59\)
(Đề bài còn thiếu \(n\in N\))