K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Bài 2

a) Ta có

S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

S = \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

\(\dfrac{1}{13}< \dfrac{1}{12}\)

\(\dfrac{1}{14}< \dfrac{1}{12}\)

\(\dfrac{1}{15}< \dfrac{1}{12}\)

=> \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}.3\)

Lại có

\(\dfrac{1}{61}< \dfrac{1}{60}\)

\(\dfrac{1}{62}< \dfrac{1}{60}\)

\(\dfrac{1}{63}< \dfrac{1}{60}\)

=> \(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}.3\)

=> S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) < \(\dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)

= \(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\) = \(\dfrac{1}{2}\)

=> đpcm

26 tháng 6 2017

Ta có

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}\)

\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)

\(\dfrac{1}{1}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)

\(\dfrac{1}{x+2}=\dfrac{1}{1}-\dfrac{2015}{2016}\)

\(\dfrac{1}{x+2}=\dfrac{1}{2016}\)

2016 = x + 2

x = 2016 - 2

x = 2014

Vậy x = 2014 là giá trị cần tìm

20 tháng 6 2015

Ta có: 

\(\frac{1}{5}=\frac{1}{5}\)

\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}

20 tháng 6 2015

Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)

\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}

31 tháng 5 2015

Ta có:

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3

=>S<1/5+1/4+1/20=10/20

Hay S<1/2

23 tháng 6 2018

a) Ta có:

S = 1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63

Ta thấy:

1/13 < 1/12 ; 1/14 < 1/12 ; 1/15 < 1/12

=> 1/13 + 1/14 + 1/15 < 1/12 + 1/12 + 1/12 = 1/12 . 3 = 1/4  (1)

1/61 < 1/60 ; 1/62 < 1/60 ; 1/63 < 1/60

=> 1/61 + 1/62 + 1/63 < 1/60 + 1/60 + 1/60 = 1/60. 3 = 1/20  (2)

 Từ (1) và (2)

=> 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 < 1/4 + 1/20

=>S =  1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 < 1/4 + 1/20 + 1/5 = 5/20 + 1/20 + 4/20 = 10/20 = 1/2 (ĐPCM)

b) Ta có:

\(P=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)

\(2P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(2P-P=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^2}+...+\frac{1}{2^{19}}-\frac{1}{2^{19}}-\frac{1}{2^{20}}\)

\(P=1-\frac{1}{2^{20}}< 1\)

=> P < 1

18 tháng 4 2016

Ta có : S = 1/5 + 

18 tháng 4 2016

cho mình xin k nha

13 tháng 4 2015

bài này có trông sách nâng cao và phataienf toán 6ss tr

18 tháng 8 2015

Ta có : 

S = \(\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)