Tìm nghiệm nguyên dương thỏa mãn: \(4y^2=2+\sqrt{199-x^2-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biến đơi VT được: \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\left(\sqrt{200-\left(x+1\right)^2}\right)\)
Để vế trái xác định thì \(\left(x+1\right)^2\le200\) \(\left(1\right)\).
Mặt khác : \(VP\) chia hết 2 mà 2 chia hết cho 2 nên \(\left(\sqrt{200-\left(x+1\right)^2}\right)\) chia hết cho 2
hay \(200-\left(x+1\right)^2\) chia hết cho 4. VÌ 200 chia hêt cho 4. Nên \(\left(x+1\right)^2\) chia hết cho 4 \(\left(2\right)\)
mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\) (x là số nguyên)
Từ (1) ;(2) và (3) ta có: \(\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow\left(x+1\right)\in\left(0;2;-2\right)\)
Từ đó tính được y.
tick mình nha
1./ Với mọi y nguyên thì: 4y - 1 nguyên và không phải số chính phương.
(vì ngược lại nếu 4y - 1 = m2 => m lẻ => 4y - 1 = (2k + 1)2 => 4y = 4k2 + 4k + 2. VT chia hết cho 4, VP không chia hết cho 4).
=> \(\sqrt{4y-1}\)là 1 số vô tỷ.
2./ Viết PT trở thành: \(\frac{11x}{5}-3y-2=\sqrt{2x+1}-\sqrt{4y-1}\)(2)
Đặt \(A=\frac{11x}{5}-3y-2\)(2) trở thành: \(A+\sqrt{4y-1}=\sqrt{2x+1}\). Bình phương 2 vế:
\(A^2+4y-1+2A\sqrt{4y-1}=2x+1\)
\(\Rightarrow2A\sqrt{4y-1}=2x+2-A^2-4y\)(3)
VT(3) là số vô tỷ để "=" VP(3) là 1 số hữu tỷ thì A = 0.
3./ Do đó: \(\sqrt{4y-1}=\sqrt{2x+1}\Rightarrow2x+1=4y-1\Rightarrow x=2y-1\)
Và: \(0=\frac{11x}{5}-3y-2\Rightarrow11\left(2y-1\right)-15y-10=0\Rightarrow y=3\Rightarrow x=5\).
4./ Phương trình có nghiệm nguyên duy nhất x = 5; y = 3.
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)
Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)
Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)
Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)
Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)
Từ đó tính y nha
Không biết là đúng không nữa cơ.
Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)
\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)
Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)
Tìm được y rồi thì tìm x nha.