K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Kho qua!

4 tháng 9 2016

toan lop 9 kho dui

ban dua cau hoi nay len 24h di

7 tháng 7 2016

1./ Với mọi y nguyên thì: 4y - 1 nguyên và không phải số chính phương.

(vì ngược lại nếu 4y - 1 = m2 => m lẻ => 4y - 1 = (2k + 1)2 => 4y = 4k2 + 4k + 2. VT chia hết cho 4, VP không chia hết cho 4).

=> \(\sqrt{4y-1}\)là 1 số vô tỷ.

2./ Viết PT trở thành: \(\frac{11x}{5}-3y-2=\sqrt{2x+1}-\sqrt{4y-1}\)(2)

Đặt \(A=\frac{11x}{5}-3y-2\)(2) trở thành: \(A+\sqrt{4y-1}=\sqrt{2x+1}\). Bình phương 2 vế:

\(A^2+4y-1+2A\sqrt{4y-1}=2x+1\)

\(\Rightarrow2A\sqrt{4y-1}=2x+2-A^2-4y\)(3)

VT(3) là số vô tỷ để "=" VP(3) là 1 số hữu tỷ thì A = 0.

3./ Do đó: \(\sqrt{4y-1}=\sqrt{2x+1}\Rightarrow2x+1=4y-1\Rightarrow x=2y-1\)

Và: \(0=\frac{11x}{5}-3y-2\Rightarrow11\left(2y-1\right)-15y-10=0\Rightarrow y=3\Rightarrow x=5\).

4./ Phương trình có nghiệm nguyên duy nhất x = 5; y = 3.

18 tháng 10 2021

\(2\left(2x+y^2-2y\sqrt{x-1}+2\sqrt{x-1}-4y+3\right)=0\)

Ta có:

\(VT=\left(y-1\right)^2-4\sqrt{x-1}\left(y-1\right)+4\left(x-1\right)+y^2-6y+9\)

\(=\left[\left(y-1\right)-2\sqrt{x-1}\right]^2+\left(y-3\right)^2\ge0=VP\)

Dấu = xảy ra khi:

\(\hept{\begin{cases}y-3=0\\y-1=2\sqrt{x-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3\\x=2\end{cases}}\)

NV
13 tháng 8 2021

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

18 tháng 10 2021

x,y thuộc N ôk

24 tháng 4 2020

Theo đề bài: 

 \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)

Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)

Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)

Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)

<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)

Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)

<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5) 

Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y 

=> \(M=9x^4+7x^4-12x^2+4x^2+5\)

\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)

Với x = 1/2 => (x; y) = ( 1/2; -1/2) 

Với x = -1/2 => ( x; y ) = ( -1/2; 1/2) 

Vậy min M = 4 đạt tại ....

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

21 tháng 8 2021

Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)

Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)

Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)

Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)

Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)

Từ đó tính y nha

 

 

21 tháng 8 2021

Không biết là đúng không nữa cơ.

Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)

\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)

Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)

Tìm được y rồi thì tìm x nha.