Giải phương trình sau:
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\)\(\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)
\(\Leftrightarrow\)\(\dfrac{x+2}{13}+\dfrac{13}{13}+\dfrac{2x+45}{15}-\dfrac{15}{15}=\dfrac{3x+8}{37}+\dfrac{37}{37}+\dfrac{4x+69}{9}-\dfrac{9}{9}\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)=\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)-\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+15=0\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\end{matrix}\right.\)
Do đó: \(x=-15\)
Vậy \(S=\left\{-15\right\}\)
a. \(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)
\(\Leftrightarrow2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
\(\Leftrightarrow12x+10-10x-3=8x+4x+2\)
\(\Leftrightarrow12x-10x-8x-4x=2-10+3\)
\(\Leftrightarrow-10x=-5\Leftrightarrow x=\dfrac{1}{2}\)
b. \(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\)
\(\Leftrightarrow6x^2+2=6x^2+6x+6\)
\(\Leftrightarrow6x^2-6x^2-6x=6-2\Leftrightarrow-6x=4\)
\(\Leftrightarrow x=\dfrac{-2}{3}\)
c. \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\left(\dfrac{x+2}{13}+1\right)+\left(\dfrac{2x+45}{15}-1\right)=\left(\dfrac{3x+8}{37}+1\right)+\left(\dfrac{4x+69}{9}-1\right)\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
Vì \(\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)>0\)
\(\Leftrightarrow x+15=0\Leftrightarrow x=-15\)
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
giải phương trình sau
\(\dfrac{\text{x+1}}{11}-\dfrac{2x-5}{15}=\dfrac{3x-47}{17}-\dfrac{4x-59}{19}\)
Lời giải:
PT \(\Leftrightarrow (\frac{x+1}{11}-1)-(\frac{2x-5}{15}-1)=(\frac{3x-47}{17}+1)-(\frac{4x-59}{19}+1)\)
\(\Leftrightarrow \frac{x-10}{11}-\frac{2(x-10)}{15}=\frac{3(x-10)}{17}-\frac{4(x-10)}{19}\)
\(\Leftrightarrow (x-10)(\frac{1}{11}+\frac{4}{19}-\frac{2}{15}-\frac{3}{17})=0\)
\(\Leftrightarrow x-10=0\Leftrightarrow x=10\)
c: =>\(\dfrac{2x-1}{\left(x+5\right)\left(x-1\right)}+\dfrac{x-2}{\left(x-1\right)\left(x-9\right)}=\dfrac{3x-12}{\left(x-9\right)\left(x+5\right)}\)
=>(2x-1)(x-9)+(x-2)(x+5)=(3x-12)(x-1)
=>2x^2-19x+9+x^2+3x-10=3x^2-15x+12
=>-16x-1=-15x+12
=>-x=13
=>x=-13
\(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
\(\Leftrightarrow\dfrac{20\left(2x-1\right)}{60}+\dfrac{15\left(3x-2\right)}{60}=\dfrac{12\left(4x-3\right)}{60}\)
`<=> 20(2x-1) +15(3x-2) =12(4x-3)`
`<=> 40x - 20 + 45x - 30 = 48x - 36`
`<=> 85x -50 = 48x - 36`
`<=> 85x-48x = -36+50`
`<=> 37x =14`
`<=> x= 14/37`
Vậy phương trình có nghiệm `x=14/37`
__
\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-6}{x^2-9}\)
\(\Leftrightarrow\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-6}{\left(x-3\right)\left(x+3\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
Ta có : \(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{4\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-6}{\left(x-3\right)\left(x+3\right)}\)
`=> 5x + 15 + 4x -12=x-6`
`<=> 9x + 3=x-6`
`<=> 9x-x=-6-3`
`<=> 8x = -9`
`<=>x=-9/8(tm)`
Vậy phương trình có nghiệm `x=-9/8`
` @ yngoc`
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow x+15=0\)
\(\Leftrightarrow x=-15\)
Vậy x = -15.
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\\ \Leftrightarrow\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\\ \Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)
\(\Leftrightarrow\left(x+15\right)\dfrac{1}{13}+\left(x+15\right)\dfrac{2}{15}=\left(x+15\right)\dfrac{3}{37}+\left(x+15\right)\dfrac{4}{9}\\ \Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
vì:\(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\) nên:
x+15=0 =>x=-15
vậy phương trình có tập nghiệm là S={-15}