Giải dùm em câu 3.21 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
Đổi 1h15 phút thành 1,25 h
Thời gian dự định là: $\frac{AB}{40}$ (h)
Thời gian thực tế: $\frac{AB}{40-15}=\frac{AB}{25}$ (h)
Chênh lệch thời gian dự định và thời gian thực tế là:
$\frac{AB}{25}-\frac{AB}{40}=1,25$
$\frac{3AB}{200}=1,25\Rightarrow AB=83,33$ (km)
Câu 3:
Đổi 20 phút thành $\frac{1}{3}$ giờ
Giả sử sau khi ô tô đi được $a$ giờ thì hai xe gặp nhau tại $C$. Lúc này, xe máy đã đi được $a+\frac{1}{3}$ giờ
Ta có:
$AC=35(a+\frac{1}{3})=(35+20).a$
$\Leftrightarrow 35(a+\frac{1}{3})=55a$
$\Rightarrow a=\frac{7}{12}$ (h)
Đổi $\frac{7}{12}$ h = 35 phút. Vậy sau khi đi được 35 phút thì ô tô gặp xe máy.
Gọi G là trọng tâm tam giác ABC
\(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{0}\Leftrightarrow\overrightarrow{A'G}+\overrightarrow{GA}+\overrightarrow{B'G}+\overrightarrow{GB}+\overrightarrow{C'G}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\)
Goi G la trong tam tam giac A'B'C'
Lai co: \(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=\overrightarrow{0}\)
\(\Rightarrow G'\equiv G\Rightarrow G'=\left(1;0;-2\right)\)
Câu 34:
|vmax| = A.ω = 31,4 (cm/s) \(\Rightarrow\) A = \(\dfrac{\left|v_{max}\right|}{\omega}\)
Ta có công thức: vmin = \(\dfrac{S_{min}}{\Delta t}\)(*)
vì Δt < \(\dfrac{T}{2}\) (\(\dfrac{T}{6}\) < \(\dfrac{T}{2}\))
\(\Rightarrow\)Smin = 2.A. (1 - cos \(\dfrac{\Delta\phi}{2}\)) (Δϕ là góc ở tâm mà bán kính quét được qua khoảng thời gian Δt ấy, có công thức: Δϕ = ω. Δt)
Mấu chốt của bài này là bạn phải đưa biểu thức (*) về chỉ còn một ẩn là |vmax| thôi nhé! (Sử dụng công thức ω = \(\dfrac{2\pi}{T}\) để rút gọn)
(*) \(\Leftrightarrow\) vmin = \(\dfrac{2.A.\left[1-cos\left(\dfrac{\omega.\Delta t}{2}\right)\right]}{\Delta t}\)
\(\Leftrightarrow\) vmin = \(\dfrac{2.\dfrac{\left|v_{max}\right|}{\omega}.\left[1-cos\left(\omega.\dfrac{T}{6.2}\right)\right]}{\dfrac{T}{6}}\) (ở bước này là mình thay các biểu thức trên kia vào nhé)
\(\Leftrightarrow\) vmin = \(\dfrac{2.\left|v_{max}\right|\left[1-cos\left(\dfrac{2\pi}{T}.\dfrac{T}{12}\right)\right]}{\dfrac{T}{6}.\dfrac{2\pi}{T}}\)
Giờ thì ngồi rút gọn T thôi nào!
\(\Leftrightarrow\) vmin = \(\dfrac{2\left|v_{max}\right|.\left(1-cos\dfrac{\pi}{6}\right)}{\dfrac{\pi}{3}}\)
Thay |vmax| = 31,4 và π = 3,14. *Lưu ý là cos \(\dfrac{\pi}{6}\) = \(\dfrac{\sqrt{3}}{2}\) luôn nha (đừng thay π = 3,14 vào đấy!)
\(\Rightarrow\) vmin = \(\dfrac{6.31,4.\left(1-\dfrac{\sqrt{3}}{2}\right)}{3,14}\) = 8,038475773... (cm/s) \(\approx\) 8,04 (cm/s)
Vậy đáp án cần tìm là A. 8,04 cm/s
Có gì thắc mắc cứ hỏi nha. Chúc bạn học tốt!
1. should ask
*must not ask là sai vì người quản lí mới nên hỏi vài câu hỏi trước khi thực hiện thay đổi
*have to ask (mang tính chủ quan) nên có làm hay không làm cũng được nên ta không chọn đáp án này
2. could prevent
Vì sau would, could là V_inf
Gọi 3 đơn vị góp vốn lần lượt là: \(a,b,c\left(a,b,c\ne0\right)\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}=\dfrac{a+b+c}{5+7+10}=\dfrac{330000000}{22}=15000000\\\)
Khi đó:
\(\dfrac{a}{5}=15000000\Rightarrow a=15000000.5=75000000\)
\(\dfrac{b}{7}=15000000\Rightarrow b=15000000.7=105000000\)
\(\dfrac{c}{10}=15000000\Rightarrow c=15000000.10=150000000\)
3.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
B đúng
4.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)
A đúng
1.
B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)