Cho \(H\left(x\right)=x^4-2012.x^3+2012.x^2-2012.x+2012\)
Tính H(2011)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4-2012(x^3-x^2+x-1)
mà 2012=x
suy ra h(2012)=x^4-x.x^3+x.x^2-x.x+2012
=x^4-x^4+x^3-x^2+x
=x^3-x^2+x
=2012(2012^2-2012+1)
=2012(2012.2011+1)
=2012^2.2011+2012
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Áp dụng ta có :
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)
\(=1+1+...+1\)(Có tất cả 1006 số 1)
\(=1006\)
Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
tử số K ta thấy: số 1 xuất hiện trong tất cả các tổng con nên số 1 xuất hiện 2012 lần. số 2 xuất hiện trong 2011 tổng con nên số 2 xuất hiện 2011 lần... tưởng tự số 2012 sẽ xuất hiện 1 lần
=> tử số của K= 1.2012+2.2011+3.2010+4.2009+...+2012.1
K= 1.2012+2.2011+3.2010+4.2009+...+2012.1/2012.1+2011.2+2010.3+....+2011.2+1.2012
K=1
Cho K = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + .... + ( 1 + 2 + 3 + .... + 2012 ) / 2012 x 1 + 2011 x 2 + 2010 x 3 + .. + 2 x 2011 + 1 x 2012 .
Tính K .
Câu hỏi tương tự Đọc thêmToán lớp 5Violympic
Ta có: \(x=2011\Rightarrow x+1=2012\)
Khi đó, ta có:
\(H\left(x\right)=x^4-\left(x+1\right).x^3+\left(x+1\right).x^2-\left(x+1\right).x+2012\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+2012\)
\(\Rightarrow H\left(2011\right)=-2011+2012=1\).
Vậy \(H\left(2011\right)=1\)
Cách 2:
\(H\left(x\right)=x^4-2012x^3+2012x^2-2012x+2012\)
\(=x^4-2011x^3-x^3+2011x^2+x^2-2011x-x+2011+1\)
\(=x^3\left(x-2011\right)-x^2\left(x-2011\right)+x\left(x-2011\right)-\left(x-2011\right)+1\)
\(=\left(x^3-x^2+x-1\right)\left(x-2011\right)+1\)
\(\Rightarrow H\left(2011\right)=1\)
Vậy...