. Cho ∠ABC, đường cao AH, trung tuyến AM = AB. Chứng minh: tanB = 3 tanC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
\(AB^2=BH.BC\) (theo hệ thức lượng trong tam giác vuông)
\(\Rightarrow BC=\dfrac{AB^2}{BH}=\dfrac{100^2}{5}=2000\left(cm\right)\)
\(\Rightarrow HC=BC-HB=2000-5=1995\left(cm\right)\)
\(AH^2=BH.HC\Leftrightarrow AH^2=1995.5\Leftrightarrow AH=5\sqrt{399}\)
\(tanB=\dfrac{AH}{HB}\)
\(tanC=\dfrac{AH}{HC}\)
\(\)\(\Rightarrow\dfrac{tanB}{tanC}=\dfrac{HC}{HB}=\dfrac{1995}{5}=399\)
\(\Rightarrow tanB=399.tanC\left(đpcm\right)\)
\(\Rightarrowđpcm\) \(\)
Câu hỏi của Đỗ Lê Thanh Thảo - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Từ A vẽ đường cao AH của tam giác ABC, từ M vẽ đường thẳng vuông góc với BC cắt AC tại N, Ta có các biểu thức sau:
tgC=AH/CH=AH/(1/4(BC))=4AH/BC (1)
tgB=MN/MB=MN/(1/2(BC))=2MN/BC. (2)
tgB/tg C=(2MN/BC)/(4AH/BC)= MN/2AH (3)
Theo định lý Talet thì MN/AH=2/3 do đó thay MN=2AH/3 vào biểu thức (3) ta có
tgB/tgC=1/3
Có AM=AB nên tam giác AMB cân tại A
Mà \(AH\perp BH\)
\(\Rightarrow\)AH là đường cao trong tam giác ABM hay AH cũng đồng thời là đường trung tuyến
\(\Rightarrow\) H là trung điểm của BM
\(\Rightarrow BH=HM=\dfrac{1}{2}BM=\dfrac{1}{2}MC\)
\(tanC=\dfrac{AH}{HC}=\dfrac{AH}{HM+MC}=\dfrac{AH}{BH+2BH}=\dfrac{AH}{3BH}\)
\(tanB=\dfrac{AH}{HB}\)
\(\Rightarrow tanB=3tanC\)
Vậy...