Cho (c) có y = \(\dfrac{x+3}{x-1}\)
Tìm M thuộc (c) sao cho tiếp tuyến của (c) tạo với hai trục toạ độ một tam giác vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{x+2}{x+1}\Rightarrow y'=\dfrac{-1}{\left(x+1\right)^2}\)
Gọi giao điểm của tiếp tuyến tại M với 2 trục lần lượt là A và B
Do tam giác OAB vuông cân \(\Rightarrow\widehat{ABO}=45^0\)
\(\Rightarrow\) Tiếp tuyến tạo với trục hoành một góc \(45^0\) hoặc \(135^0\)
\(\Rightarrow\) Hệ số góc k của tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}k=tan45^0=1\\k=tan135^0=-1\end{matrix}\right.\)
Gọi \(M\left(x_0;y_0\right)\) \(\Rightarrow y'\left(x_0\right)=k\Rightarrow\left[{}\begin{matrix}\dfrac{-1}{\left(x_0+1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-1}{\left(x_0+1\right)^2}=-1\end{matrix}\right.\)
\(\Rightarrow\left(x_0+1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=2\\x_0=-2\Rightarrow y_0=0\end{matrix}\right.\)
Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(0;2\right)\\M\left(-2;0\right)\end{matrix}\right.\)
\(y'=\dfrac{-4}{\left(x-1\right)^2}< 0\)
Đường thẳng tạo với 2 trục tọa độ 1 tam giác vuông cân khi và chỉ khi nó có hệ số góc bằng 1 hoặc -1
\(\Rightarrow\left[{}\begin{matrix}\dfrac{-4}{\left(x-1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-4}{\left(x-1\right)^2}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Các tiếp tuyến: \(\left[{}\begin{matrix}y=-\left(x+1\right)\\y=-\left(x-3\right)+4\end{matrix}\right.\)
(C): \(y=x^3-3x^2+1\)
=>\(y'=3x^2-3\cdot2x=3x^2-6x\)
Tiếp tuyến của (C) tại điểm có x=3 có dạng là:
\(y-y\left(3\right)=f'\left(3\right)\cdot\left(x-3\right)\)
=>\(y-\left(3^3-3\cdot3^2+1\right)=\left(3\cdot3^2-6\cdot3\right)\left(x-3\right)\)
=>\(y-1=9\left(x-3\right)=9x-27\)
=>y=9x-27+1=9x-26
Gọi A(x,y) và B(x,y) lần lượt là tọa độ giao điểm của đường thẳng y=9x-26 với trục Ox và trục Oy
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\9x-26=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{26}{9}\\y=0\end{matrix}\right.\)
Tọa độ B là; \(\left\{{}\begin{matrix}x=0\\y=9\cdot0-26=-26\end{matrix}\right.\)
Vậy: A(26/9;0); B(0;-26)
\(OA=\sqrt{\left(\dfrac{26}{9}-0\right)^2+\left(0-0\right)^2}=\dfrac{26}{9}\)
\(OB=\sqrt{\left(0-0\right)^2+\left(-26-0\right)^2}=26\)
Vì Ox\(\perp\)Oy nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot26\cdot\dfrac{26}{9}=\dfrac{338}{9}\)
=>Chọn D