K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

(C): \(y=x^3-3x^2+1\)

=>\(y'=3x^2-3\cdot2x=3x^2-6x\)

Tiếp tuyến của (C) tại điểm có x=3 có dạng là:

\(y-y\left(3\right)=f'\left(3\right)\cdot\left(x-3\right)\)

=>\(y-\left(3^3-3\cdot3^2+1\right)=\left(3\cdot3^2-6\cdot3\right)\left(x-3\right)\)

=>\(y-1=9\left(x-3\right)=9x-27\)

=>y=9x-27+1=9x-26

Gọi A(x,y) và B(x,y) lần lượt là tọa độ giao điểm của đường thẳng y=9x-26 với trục Ox và trục Oy

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\9x-26=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{26}{9}\\y=0\end{matrix}\right.\)

Tọa độ B là; \(\left\{{}\begin{matrix}x=0\\y=9\cdot0-26=-26\end{matrix}\right.\)

Vậy: A(26/9;0); B(0;-26)

\(OA=\sqrt{\left(\dfrac{26}{9}-0\right)^2+\left(0-0\right)^2}=\dfrac{26}{9}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(-26-0\right)^2}=26\)

Vì Ox\(\perp\)Oy nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot26\cdot\dfrac{26}{9}=\dfrac{338}{9}\)

=>Chọn D

26 tháng 4 2016

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến \(\Delta\) cần tìm

Ta có : \(y'=3x^2-12x+9\Rightarrow y'\left(x_0\right)=3x^2_0-12x_0+9\)

Ta có : \(x_0=1;y_0=2;y'\left(x_0\right)=0\)

Phương trình tiếp tuyến là :  \(y-2=0\left(x-1\right)\) hay y = 2

b) Ta có \(x_0=0\Rightarrow y_0=-2,y'\left(x_0\right)=9\)

Phương trình tiếp tuyến là :\(y+2=9\left(x-0\right)\) hay \(y=9x-2\)

c) Ta có \(x_0=-1\Rightarrow y_0=f\left(x_0\right)=-18;y'\left(x_0\right)=24\)

Phương trình tiếp tuyến là : \(y+18=24\left(x+1\right)\) hay \(y=24x+6\)

d) Ta có : \(y_0=6\Rightarrow x_0^3-6x^2_0+9x_0-2=-2\Leftrightarrow x_0^3-6x^2_0+9x_0=0\)

                                                                      \(\Leftrightarrow x_0=0;x_0=3\)

\(x_0=-1\) suy ra phương trình tiếp tuyến là : \(y=9x-2\)

\(x_0=3\Rightarrow y_0=-2,y'\left(x_0\right)=0\), suy ra phương trình tiếp tuyến là : \(y=2\)

Vậy có 2 tiếp tuyến là \(y=9x-2;y=2\)

e) Ta có : \(y'=0\Leftrightarrow\)\(\begin{cases}x=1\\x=3\end{cases}\)\(y''=6x-12\)

\(y''\left(1\right)=-6< 0;y"\left(3\right)=6>0\)

Suy ra đồ thị (C) có điểm cực tiểu là \(A\left(3;-2\right)\); điểm cực đại là \(B\left(1;2\right)\)

Giả sử \(M\left(a;a^3-6a^2+9a-2\right),a\ne3;1\)

Phương trình đường thẳng AB : \(2x+y-4=0\)

Ta có : \(S_{SBM}=\frac{1}{2}AB.d\left(M;AB\right)=6\)

\(\Leftrightarrow\frac{1}{2}\sqrt{2^2+\left(-4\right)^2}.\frac{\left|2a+a^3-6a^2+9a-2-4\right|}{\sqrt{2^2+1}}=6\)

\(\Leftrightarrow\left|a^3-6a^2+11a-6\right|=6\Leftrightarrow\left[\begin{array}{nghiempt}a=0\Rightarrow M\left(0;-2\right)\\a=4\Rightarrow M\left(4;2\right)\end{array}\right.\)

* Phương trình tiếp tuyến với (C) tại điểm M(0;-2) là : \(y+2=y'\left(0\right)\left(x-0\right)\) hay \(y=9x-2\)

* Phương trình tiếp tuyến với (C) tại điểm M(4;2) là : \(y-2=y'\left(4\right)\left(x-4\right)\) hay \(y=9x-34\)

 
27 tháng 7 2019

17 tháng 12 2018

Chọn C.

Ta có: 

Đồ thị hàm số tiếp xúc với trục hoành tại gốc tọa độ O(0;0) nên 

Đồ thị hàm số đi qua điểm A(1;3) nên 3 = 1 + a => a = 2 

20 tháng 1 2018

Đáp án A.

2 tháng 11 2017

Đáp án A

Phương pháp:

Phương trình a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0  có n nghiệm phân biệt x1, x2, ...,xn được viết dưới dạng a n x - x 1 x - x 2 . . . x - x n = 0  

Cách giải:

Gọi phương trình đường thẳng d:

Xét phương trình hoàng độ giao điểm

f(x) - g(x) = 0

Đường thẳng d cắt (C) tại điểm A có hoành độ -1 và điểm B có hoành độ bằng 2 .

 

16 tháng 7 2019

12 tháng 12 2017

28 tháng 4 2017

1 tháng 12 2019