K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lần sau bạn nhớ đánh đề rõ ràng hơn. Nếu nhìn đề thì mình nghĩ thế này

undefined

20 tháng 10 2019

điều kiện ban đầu <=> (x-1)2+(y-2)2+(z-3)2 \(\le1\)

áp dụng bdt sau (ax+ by+ cz)2\(\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)(bunhiacopxky với 3 số)

[ x-1 + 2(y-2) + 2(z-3)]2 \(\le\left(1^2+2^2+2^2\right)\left[\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2\right]\le9.1=9\)

=>\(-3\le\) x-1 +2(y-2) +2(z-3) \(\le3\) <=> 8\(\le x+2y+2z\le14\)

NV
16 tháng 4 2022

\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)

\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)

Ta có:

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\) 

\(\Rightarrow y=1\)

Thế vào pt ban đầu: \(25^x-5^x=20\)

Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow5^x=5\Rightarrow x=1\)

18 tháng 4 2022

Em cám ơn  thầy nhiều lắm ạ!

9 tháng 10 2021

a)=\(3x^3-15x^2+21x\)

b)\(=-2x^4y-10x^2y+2xy\)

c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)

d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)

e)\(=x^2-4y^2\)

f)\(=-2x^2y^3+y-3\)

g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)

h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)

i)\(=x^2-x-3\)

j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)

24 tháng 10 2021

Tại sao ý b có dấu - trước ngoặc đâu mà đổi dấu mong bn giải đáp

20 tháng 9 2019

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

20 tháng 9 2019

mọi người giúp mk câu b, c, d còn lại nha

9 tháng 11 2021

chắc b

 

27 tháng 8 2021

\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)

\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)

\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)

\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)

27 tháng 8 2021

cảm ơn bạn

 

23 tháng 1

a) x : 2 = y : (-5)

⇒ x/2 = y/(-5)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 = 

x/2 = 2 ⇒ x = 2.2 = 4

y/(-5) = 2 ⇒ y = 2.(-5) = -10

Vậy x = 4; y = -10

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8

x/2 = 8 ⇒ x = 8.2 = 16

y/5 = 9 ⇒ y = 8.5 = 40

z/6 = 8 ⇒ z = 8.6 = 48

Vậy x = 16; y = 40; z = 48

c) 2x = 3y = 6z

⇒ x/(1/2) = y/(1/3) = z/(1/6)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12

2x = 12 ⇒ x = 12 : 2 = 6

3y = 12 ⇒ y = 12 : 3 = 4

6z = 12 ⇒ z = 12 : 6 = 2

Vậy x = 6; y = 4; z = 2

23 tháng 1

d) x/3 = y/2 = z/(-3)

⇒ 2x/6 = 3y/6 = 4z/(-12)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4

x/3 = -4 ⇒ x = -4.3 = -12

y/2 = -4 ⇒ y = -4.2 = -8

z/(-3) = -4 ⇒ z = -4.(-3) = 12

Vậy x = -12; y = -8; z = 12

e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36

x/5 = -36 ⇒ x = -36.5 = -180

y/6 = -36 ⇒ y = -36.6 = -216

z/7 = -36 ⇒ z = -36.7 = -252

Vậy x = -180; y = -216; z = -252

f) x/12 = y/13

⇒ 3x/36 = 2y/26

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31

x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31

y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31

z/15 = 26/31 ⇒  z = 26/31 . 15 = 390/31

Vậy x = 312/31; y = 338/31; z = 390/31

NV
20 tháng 1

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)