Cho hình 11. Chứng minh rằng AB vuông góc với CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AC = AD (gt) nên A thuộc đường trung trực của CD.
Vì BC = BD (gt) nên B thuộc đường trung trực của CD.
Vì A ≠ B nên AB là đường trung trực của CD.
Vậy AB ⊥ CD.
a: Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔAED=ΔBFC
Suy ra: DE=FC
Gọi M là trung điểm BC => BM=CM
Xét tam giác ABC có:
BM=CM
AE=EC (giả thiết vì E la trung điểm của AC)
Nên: EM là đường trung bình trong tam giác ABC
=>EM//AB và EM=AB/2
Tương tự: Xét tam giác BCD có:
FM là đường trung bình trong tam giác BCD
=>FM//CD và FM=CD/2
Lại có:
FM//CD
mà AB//CD (theo giả thiết ABCD la hthang)
Nên: FM//AB
Mà EM//AB
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng.
Vậy,EF=FM-EM=(CD-AB)/2
Lấy M là trung điểm của CD
AC2−AD2=BC2−BD2AC2−AD2=BC2−BD2
<=> (AC−→−−AD−→−)(AC−→−+AD−→−)=(BC−→−−BD−→−)(BC−→−+BD−→−)(AC→−AD→)(AC→+AD→)=(BC→−BD→)(BC→+BD→)
<=> 2.DC−→−.AM−→−=2.DC−→−.BM−→−2.DC→.AM→=2.DC→.BM→
<=> 2.DC−→−.(AM−→−−BM−→−)=02.DC→.(AM→−BM→)=0
<=> 2.DC−→−.AB−→−=02.DC→.AB→=0
<=> DC vuông góc với AB
a: Xét ΔABD và ΔBAC có
BA chung
AD=BC
BD=AC
Do đó; ΔABD=ΔBAC
=>góc OAB=góc OBA
=>OA=OB
OA+OC=AC
OB+OD=BD
mà OA=OB và AC=BD
nên OC=OD
b: Xét ΔODE vuông tại D và ΔOCE vuông tại C có
OE chung
OD=OC
Do đó; ΔODE=ΔOCE
=>ED=ED
c: Xét ΔADE và ΔBCE có
AD=BC
góc ADE=góc BCE
DE=CE
Do đó: ΔADE=ΔBCE
=>EA=EB
vì AC=AD=>A thuộc đường trung trực của CD
CB=BD=>B thuộc đường trung trực của CD
=>AB thuộc đường trung trực của CD=>AB vuông góc với CD