chứng minh rằng giá trị nhỏ nhất của đa thức: f(x)= x2 +2x+4 là 3 khi x=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=-1 vào đa thứcf[x] ta có
f[x]=x2+2x+4
f[x]=-1.2+2.[-1]+4
f[x]=-2+[-2]+4
f[x]=-4+4=0
đầu bài cho giá trị nhỏ nhất là 3 khi x=-1[mà 0 nhỏ hơn 3]
suy ra giả thiết của đầu bài đưa ra là đúng
NẾU CÂU TRẢ LỜI CỦA MÌNH SAI HAY ĐÚNG HAY GÓP Ý KIẾN VÀ BẤM NÚT DỤNG CHO MÌNH NHÉ
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
Bài 17:
\(f\left(x\right)=x^2+2x+1+3=\left(x+1\right)^2+3\ge3\)
Dấu '=' xảy ra khi x+1=0
hay x=-1
\(1,\\ A=\left(4x^2+y^2\right)\left(4x^2-y^2\right)=16x^4-y^4\)
Đề sai, biểu thức A ko có m thì sao chứng minh?
\(2,\) Gọi 2 số nguyên lt là \(a;a+1\left(a\in Z\right)\)
Ta có \(a+1-a=1\) là số lẻ (đpcm)
\(3,P=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)
\(4,Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Ta có: \(x^2+2x+4=x^2+2.x.1+1+3\)
\(=\left(x+1\right)^2+3\) . Dễ thấy:
\(\left(x+1\right)^2\ge0\forall x\) Dấu ''='' xảy ra
\(\Leftrightarrow x=-1\)
Vậy GTNN của.......................là 3 khi x = -1