Cho \(x,y>0\) thõa mãn \(x+y\ge5\). Chứng minh rằng \(2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\ge21\)
Giải chi tiết giúp em nha Hung nguyen , Hoang Hung Quan,Ace Legona...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai bảo vậy Xuân Tuấn Trịnh , theo tui thì khác chứ nhỉ !!!
ai bảo vậy Xuân Tuấn Trịnh , theo tui thì khác chứ nhỉ !!!
\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)
\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)
Đề sai
\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)
\(=2\sqrt{x}\)
\(x\) = y.\(\dfrac{3}{4}\) ; z = \(\dfrac{y}{5}\).7
Thay \(x\) = y.\(\dfrac{3}{4}\) và z = \(\dfrac{y}{5}\).7 vào biểu thức:
2\(x\) + 3y - z = 186 ta có:
2.y.\(\dfrac{3}{4}\) + 3y - \(\dfrac{y}{5}\).7 = 186
y.(2.\(\dfrac{3}{4}\) + 3 - \(\dfrac{7}{5}\)) = 186
y.\(\dfrac{31}{10}\) = 186
y = 186 : \(\dfrac{31}{10}\)
y = 60 ; \(x\) = 60. \(\dfrac{3}{4}\) = 45; z = 60.\(\dfrac{7}{5}\) = 84
\(x\) + y + z = 45 + 60 + 84 = 189
Mình không hiểu câu sau của đề bài.
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó:
\(\dfrac{x}{15}=3\Rightarrow x=15.3=45\)
\(\dfrac{y}{20}=3\Rightarrow y=20.3=60\)
\(\dfrac{z}{28}=3\Rightarrow z=28.3=84\)
Tổng là: \(x+y+z=45+60+84=189\)
Vậy....
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\frac{47}{15}(3x^2+5y^2)=[(\sqrt{3}x)^2+(-\sqrt{5}y)^2][(\frac{2}{\sqrt{3}})^2+(\frac{3}{\sqrt{5}})^2]\geq (2x-3y)^2$
$\Leftrightarrow \frac{47}{15}(3x^2+5y^2)\geq 49$
$\Rightarrow 3x^2+5y^2\geq \frac{735}{47}$
Ta có đpcm.
\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\left(ĐKXĐ:y\ne0\right)\)
\(\Rightarrow\dfrac{xy-27}{9y}=\dfrac{1}{18}\)
\(\Rightarrow18\left(xy-27\right)=9y\)
\(\Rightarrow2\left(xy-27\right)=y\)
\(\Rightarrow2xy-54=y\)
\(\Rightarrow2xy-y=54\Rightarrow y\left(2x-1\right)=54\)
\(\Rightarrow y=\dfrac{54}{2x-1}\)
- Suy ra 54 chia hết cho 2x - 1
\(\Rightarrow2x-1\inƯ\left(54\right)\)
\(\Rightarrow2x-1\in\left\{1;-1;2;-2;3;-3;9;-9;27;-27\right\}\)
Cho 2x - 1 bằng từng giá trị ở trên, ta tìm được :
\(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};2;-1;5;-4;14;-13\right\}\). Mà x không có giá trị ngoài tập số nguyên.
\(\Rightarrow x\in\left\{-13;-4;-1;0;1;2;5;14\right\}\)
Thay các giá trị x trên vừa tìm được vào y :
\(\Rightarrow y\in\left\{54;-54;18;-18;6;-6;2;-2\right\}\)
Vậy : Các số x và y thỏa mãn đề bài là : \(\left(x;y\right)\in\left\{\left(1;54\right),\left(0;-54\right),\left(2;18\right),\left(-1;-18\right),\left(5;6\right),\left(-4;-6\right),\left(14;2\right),\left(-13;-2\right)\right\}\)
Áp dụng bất đẳng thức cosi cho 2 số dương:
\(x+\dfrac{4}{x}\ge2\sqrt{x\cdot\dfrac{4}{x}}=4\)
Dấu '=" xảy ra khi và chỉ khi x2=4<=>x=2
\(2y+\dfrac{18}{y}\ge2\sqrt{2y\cdot\dfrac{18}{y}}=12\)
Dấu "=" xảy ra khi và chỉ khi 2y2=18<=>y=3
x+y\(\ge5\) theo đề bài
Dấu "=" xảy ra khi và chỉ khi x+y=5
=>\(\left(x+\dfrac{4}{x}\right)+\left(2y+\dfrac{18}{y}\right)+\left(x+y\right)\ge4+12+5=21\)
Dấu bằng xảy ra khi và chỉ khi x=2 y=3
rất chặt chẽ, rất logic, a nhầm 1 chỗ 2y2 = 12 chứ k phải =18, nhưng cái nhầm k có gtrị nhiu so voi cách giải ưu việt