K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

4 tháng 2 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cách dựng:

- Dựng ∆ BHC, BH = 2,5 cm

- ∠ (BHC) = 90 0

- Trên tia Hx lấy điểm C sao cho BC = 3cm

- Dựng tia đi qua B và song song CH nằm trên nửa mặt phẳng bờ BC chứa điểm H. Lấy điểm A sao cho BA = 2cm

- Dựng cung tròn tâm B bán kính bằng AC cắt tia CH tại D.

Nối AD ta có hình thang ABCD cần dựng.

Chứng minh: Thật vậy theo cách dựng AB // CD nên tứ giác ABCD là hình thang có AB = 2cm, BC = 3cm, BH = 2,5cm.

AC = BD

Vậy ABCD là hình thang cân thỏa mãn điều kiện bài toán.

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

Dựng tam giác ACD, sau đó dựng điểm B

4 tháng 1 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán.

Tam giác ADC dựng được vì biết ba cạnh AD = 2cm, DC = 4cm, AC = 3,5cm. Điểm B thỏa mãn hai điều kiện:

- B nằm trên đường thẳng đi qua A và song song với CD.

- B cách C một khoảng bằng 2,5cm.

Cách dựng:

- Dựng  ∆ ADC biết AD = 2cm, DC = 4cm, AC = 3,5cm

- Dựng tia Ax // CD. Ax nằm trong nửa mặt phẳng bờ AD chứa điểm C.

- Dựng cung tròn tâm C bán kính 2,5cm. Cung này cắt Ax tại B, nối CB ta có hình thang ABCD cần dựng.

Chứng minh:

Tứ giác ABCD là hình thang vì AB // CD.

Hình thang ABCD có: AD = 2cm, CD = 4cm, AC = 3,5cm, BC = 2,5cm thỏa mãn yêu cầu bài toán.

Biện luận: Vì ∆ ADC luôn dựng được nên hình thang ABCD dựng được .

Vì cung tròn tâm C bán kính 3cm cắt Ax tại hai điểm nên ta dựng được hai hình thang thỏa mãn bài toán.

23 tháng 5 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADH dựng được vì biết hai cạnh góc vuông AH = 2cm và HD = lcm, ∠ H = 90 0  và đáy AB < CD nên  ∠ D <  90 0 . Điểm H nằm giữa D và C.

Điểm C nằm trên tia đối tia HD và cách H một đoạn bằng 3 cm

Điểm B thỏa mãn hai điều kiện:

- B nằm trên đường thẳng đi qua A và song song với DH.

- B cách A một khoảng bằng 2cm

Cách dựng:

- Dựng ΔAHD biết  ∠ H =  90 0 , AH = 2cm , HD = lcm

- Dựng tia đối của tia HD

- Trên tia đối của tia HD dựng điểm C sao cho HC = 3cm

- Dựng tia Ax // DH, Ax nằm trên nửa mặt phẳng bờ AD chứa điểm H.

- Trên tia Ax, dựng điểm B sao cho AB = 2cm . Nối CB ta có hình thang ABCD cần dựng.

Chứng minh:

Tứ giác ABCD là hình thang vì AB//CD.

Kẻ BK ⊥ CD. Tứ giác ABKH là hình thang có 2 cạnh bên song song nên: BK = AH và KH = AB

Suy ra: KC = HC - KH = HC - AB = 3 - 2 = 1 (cm)

Suy ra: ∆ AHD =  ∆ BKC (c.g.c) ⇒  ∠ D =  ∠ C

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

4 tháng 2 2018

Giải bài 1 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

* Dựng hình:

   - Dựng tam giác ADC có AD = 2cm, DC = 4cm, CA = 5cm.

   - Dựng tia Ax song song với CD.

   - Đường tròn (C; 3cm) cắt Ax tại B1 và B2.

Hình thang ABCD với B ≡ B1 hoặc B ≡ B2 là hình thang cần dựng.

* Chứng minh

   + Tứ giác ABCD có AD = 2cm, DC = 4cm, CA = 5cm.

   + Ax // CD ⇒ AB // CD ⇒ ABCD là hình thang.

   + B ∈ (C; 3cm) ⇒ BC = 3cm.