K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

ta có: x2 + y2 + z2 \(\ge\) 2x - 2y - 2z
<=> 2(x2 + y2 + z2) \(\ge\) 4x + 4y + 4z
<=> 2(x - 1)2 + 2(y - 1)2 + 2(z - 1)2 \(\ge\) 0 \(\forall\) x,y,z
dấu ''='' xảy ra \(\Leftrightarrow\) x = y = z = 1

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

NV
17 tháng 12 2020

Với mọi x;y;z ta luôn có:

\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)

\(\Leftrightarrow2+2xy-2x-2y\ge z\)

\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)

 

8 tháng 8 2017

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

1 tháng 4 2022

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

x^2+4y^2+z^2-2x-6z+8y+15

=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9

=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1

=(x-1)^2+4(y+1)^2+(z-3^)2+1

Ta thấy:(x−1)^2≥0

              4(y+1)^2≥0

             (z−3)^ 2≥0

{(x−1)^24(y+1)^2(z−3)^2≥0

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0

Khét đấy hot girl !

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

6 tháng 3 2020

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

7 tháng 3 2020

thanks bạn mình hiểu sương sương rồi:))

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{6}=\dfrac{y}{9}\left(1\right)\)

Ta có: \(\dfrac{x}{3}=\dfrac{z}{5}\)

nên \(\dfrac{x}{6}=\dfrac{z}{10}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}\)

Đặt \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=9k\\z=10k\end{matrix}\right.\)

Ta có: \(x^2+y^2+z^2=21\)

\(\Leftrightarrow k^2=\dfrac{21}{217}\)

Trường hợp 1: \(k=\dfrac{\sqrt{93}}{31}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{6\sqrt{93}}{31}\\y=9k=\dfrac{9\sqrt{93}}{31}\\z=10k=\dfrac{10\sqrt{93}}{31}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{\sqrt{93}}{31}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{-6\sqrt{93}}{31}\\y=9k=\dfrac{-9\sqrt{93}}{31}\\z=10k=\dfrac{-10\sqrt{93}}{31}\end{matrix}\right.\)

9 tháng 9 2021

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}=\dfrac{x^2+y^2+z^2}{217}=\dfrac{21}{217}=\dfrac{3}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{31}\cdot6=\dfrac{18}{31}\\y=\dfrac{3}{31}\cdot9=\dfrac{27}{31}\\z=\dfrac{3}{31}\cdot10=\dfrac{30}{31}\end{matrix}\right.\)