Tìm x biết rằng x^3 + x^2 + x + 1 = y^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: \(48751-\left(10425+y\right)=3828:12\)
\(\Leftrightarrow y+10425=48751-319=48432\)
hay y=38007
b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)
\(\Leftrightarrow2367-y=1222\)
hay y=1145
Bài 2:
Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)
\(\Leftrightarrow288:\left(x-3\right)^2=2\)
\(\Leftrightarrow\left(x-3\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
\(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
=> Có 3 trường hợp
1) x - 1/5 = 0 => x = 1/5
2) y + 1/2 = 0 => y = -1/2
3) z - 3 = 0 => z = 3
Ta có :
Với x = 1/5
=> 1/5 + 1 = y + 2 = z + 3
=> y = -4/5 ; z = -9/5
Với y = -1/2
=> x + 1 = -1/2 + 2 = z + 3
=> x = 1/2 ; z = -3/2
Với z = 3
=> x + 1 = y + 2 = 3 + 3
=> x = 5 ; y = 4
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\left(x-15\right)\left(y+12\right)\left(z-3\right)=0\)
=>\(\left[{}\begin{matrix}x-15=0\\y+12=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\y=-12\\z=3\end{matrix}\right.\)
TH1: x=15
x+1=y+2=z+3
=>y+2=z+3=15+1=16
=>y=16-2=14;z=16-3=13
TH2: y=-12
x+1=y+2=z+3
=>x+1=z+3=-12+2=-10
=>x=-10-1=-11; z=-10-3=-13
TH3: z=3
x+1=y+2=z+3
=>x+1=y+2=3+3=6
=>x=6-1=5; y=6-2=4
TH1: x + y + z ≠≠ 0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
xy+z+1xy+z+1 = yx+z+2yx+z+2 = zx+y−3zx+y−3 = x+y+zy+z+1+x+z+2+x+y−3x+y+zy+z+1+x+z+2+x+y−3
= x+y+zx+y+z+x+y+zx+y+zx+y+z+x+y+z = x+y+z2(x+y+z)x+y+z2(x+y+z) = 1212
⇒ x + y + z = 1212
⇒ x + y = 1212 - z
x + z = 1212 - y
y + z = 1212 - x
Thay y + z + 1 = 1212 - x + 1
⇒ x12−x+1x12−x+1 = 1212
⇒ 2x = 1212 - x + 1
⇒ 2x + x = 1212 + 1
⇒ 3x = 3232
⇒ x = 1212
Thay x + z + 2 = 1212 - y + 2
⇒ y12−y+2y12−y+2 = 1212
⇒ 2y = 1212 - y + 2
⇒ 2y + y = 1212 + 2
⇒ 3y = 5252
⇒ y = 5656
Thay x + y - 3 = 1212 - z - 3
⇒ z12−z−3=1/2
⇒ 2z = 1212 - z - 3
⇒ 2z + z = 1212 - 3
⇒ 3z = −52−52
⇒ z = −56−56
TH2: x + y + z = 0
⇒ xy+z+1xy+z+1 = yx+z+2yx+z+2 = zx+y−3zx+y−3 = 0
⇒ x = y = z = 0
Vậy..................
\(\left|x-\frac{1}{2}\right|\left|y+\frac{1}{3}\right|\left|z-2\right|=0\)
Vì \(\left|x-\frac{1}{2}\right|;\left|y+\frac{1}{3}\right|;\left|z-2\right|\)luôn lớn hon hoặc bằng 0
=> x-1/2=0 ; y+1/3=0 ; z-2=0
=> x=1/2 ; y=-1/3 ; z=2