a) Biết rằng \(x=4\) thì hàm số \(y=3x+b\) có giá trị là 11. Tìm b. Vẽ đồ thị của hàm số với giá trị b vừa tìm được
b) Biết rằng đồ thị của hàm số \(y=ax+5\) đi qua điểm \(A\left(-1;3\right)\). Tìm a. Vẽ đồ thị của hàm số với giá trị a vừa tìm được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x = 4 và y = 11 vào y = 3x + b ta được:
11 = 3.4 + b = 12 + b
=> b = 11 – 12 = -1
Ta được hàm số y = 3x – 1
- Cho x = 0 => y = -1 được A(0; -1)
- Cho x = 1 => y = 2 được B(1; 2).
Nối A, B ta được đồ thị hàm số y = 3x – 1.
b) Thay tọa độ điểm A(-1; 3) vào phương trình y = ax + 5 ta có:
3 = a(-1) + 5
=> a = 5 – 3 = 2
Ta được hàm số y = 2x + 5.
- Cho x = -2 => y = 1 được C(-2; 1)
- Cho x = -1 => y = 3 được D(-1; 3)
Nối C, D ta được đồ thị hàm số y = 2x + 5.
a) Để tìm giá trị của b, ta thay x = 2 vào phương trình y = -3x + b - 3x^2 + c. Vì y = 1, ta có:
1 = -3(2) + b - 3(2)^2 + c 1 = -6 + b - 12 + c 1 = b + c - 18
Đồng thời, ta biết rằng đồ thị của hàm số đi qua điểm (2, 1), vì vậy ta có thêm một điều kiện:
1 = -3(2) + b - 3(2)^2 + c 1 = -6 + b - 12 + c 1 = b + c - 18
Từ hai phương trình trên, ta có thể giải hệ phương trình để tìm giá trị của b.
b) Để tìm a và b, ta sử dụng hai điểm A(2, 3) và B(1, 1) để lập hệ phương trình:
3 = a(2) + b(2)^2 + c 1 = a(1) + b(1)^2 + c
Từ đó, ta có thể giải hệ phương trình để tìm giá trị của a và b.
Sau khi tìm được giá trị của a và b, ta có thể vẽ đồ thị của hàm số y = ax + b + c.
\(a,\Leftrightarrow1-a=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{2}\)
Hệ số góc: \(\dfrac{1}{2}\)
\(b,a=\dfrac{1}{2}\Leftrightarrow y=\dfrac{1}{2}x+1\)
Bài 9:
b: Điểm A thuộc đồ thị vì \(y_A=4=-2\cdot\left(-2\right)=-2\cdot x_A\)
Bài 10:
a: Thay x=1 và y=-3 vào (d), ta được:
\(a\cdot1=-3\)
hay a=-3
em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.
Lời giải:
a) Vì $A$ thuộc ĐTHS nên:
$y_A=ax_A\Leftrightarrow 1=a.2\Rightarrow a=\frac{1}{2}$
b)
Với $a$ tìm được thì ĐTHS là: $y=\frac{1}{2}x$
$y(2)=\frac{1}{2}.2=1$
$y(-1)=\frac{1}{2}.(-1)=-\frac{1}{2}$
$y(2021)=\frac{1}{2}.2021=\frac{2021}{2}$
c)
Hình vẽ:
a) Để đồ thị hàm số y=ax đi qua điểm A(2;1) thì
Thay x=2 và y=1 vào hàm số y=ax, ta được:
\(2a=1\)
hay \(a=\dfrac{1}{2}\)
Vậy: Để đồ thị hàm số y=ax đi qua điểm A(2;1) thì \(a=\dfrac{1}{2}\)
Bài giải:
a) Thế x = 4 và y = 11 vào y = 3x +b ta có: 11 = 3.4 + b ⇔ b = -1. Khi đó hàm số đã cho trở thành: y = 3x – 1. Đây là đường thẳng đi qua 2 điểm A(0;-1) và B(1/3; 0)
b) Đồ thị hàm số y = ax + 5 đi qua điểm A(-1; 3) nên: 3 = a(-1) + 5
<=> a = 2
Khi đó hàm số đã cho trở thành : y = 2x + 5. Đây là đường thẳng đi qua hai điểm A(0; 5) và B (−52;0)(−52;0)