Vẽ điểm A' đối xứng với A qua B, vẽ điểm C' đối xứng với C qua B (h.81)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì OB = OC nên để điểm B đối xứng với C qua tâm O cần thêm điều kiện B, O, C thằng hàng
∆ OAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của ∠ (AOB) ⇒ ∠ O 1 = ∠ O 4 (3)
ΔOAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của ∠ (AOC) ⇒ ∠ O 2 = ∠ O 3 (4)
Vì B, O, C thẳng hàng nên:
∠ O 1 + ∠ O 2 + ∠ O 3 + ∠ O 4 = 180 0 (5)
Từ (3),(4) ; (5) ⇒ 2 ∠ O 1 + 2 ∠ O 2 = 180 0
⇒ ∠ O 1 + ∠ O 2 = 90 0 ⇒ ∠ (xOy) = 90 0
Vậy ∠ (xOy) = 90 0 thì B đối xứng với C qua O
B đối xứng với A qua tia 0X. Chọn H làm giao điểm của AB với 0X. Theo tính chất đường tròn.
Ta có: AB vông góc với tia 0X. H là trung điểm của AB.
Suy ra:
AH=HB
0A=0B (1)
C đối xứng với A qua tia 0Y. Chọn K làm giao điểm của AC với 0Y. Theo tính chất đường tròn.
Ta có: AC vông góc với tia 0Y. K là trung điểm của AC.
Suy ra:
AK=KC
0A=0C (2)
Từ (1) và (2), ta có:
0A=0B=0C.
Vậy kết luận 0B=0C.
Vì A đối xứng qua OX nên góc X0A= góc X0B.(3)
Vì A đối xứng qua OY nên góc Y0A= góc Y0C.(4)
Mà góc X0A+A0Y=X0Y.
Theo (3) và (4), ta có:
B0C=2X0A+2A0Y. Hoặc B0C=2XOY.
ta có tam giác AOC và AOB là các tam giác cân, do đó các đường Õ và Oy vừa là đường cao vừa là đường phân giác của 2 tam giác.
⇒[COyˆ=yOAˆAOxˆ= xOBˆ⇒[COy^=yOA^AOx^= xOB^ (1)
để B đối xứng với C qua O thì COAˆ+AOBˆ=180oCOA^+AOB^=180o
đồng thời : COyˆ+yOAˆ=COAˆAOxˆ+ xOBˆ=AOBˆCOy^+yOA^=COA^AOx^+ xOB^=AOB^
⇒COyˆ+yOAˆ+xOAˆ+xOBˆ=COAˆ+AOBˆ=1800⇒COy^+yOA^+xOA^+xOB^=COA^+AOB^=1800 (2)
từ (1) và (2) ⇒2yOAˆ+2 xOAˆ=1800⇔yOAˆ+xOAˆ=900⇒2yOA^+2 xOA^=1800⇔yOA^+xOA^=900
hay xOyˆ=90oxOy^=90o
vậy khi xOyˆ=90oxOy^=90o thì B đối xứng với C qua O
Bài giải:
Xem hình vẽ.