Online chờ gấp, cảm ơn chư vị!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(k\in Z\)
a.
\(cos\left(x-2\right)=\dfrac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=arccos\left(\dfrac{2}{5}\right)+k2\pi\\x-2=-arccos\left(\dfrac{2}{5}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+arccos\left(\dfrac{2}{5}\right)+k2\pi\\x=2-arcos\left(\dfrac{2}{5}\right)+k2\pi\end{matrix}\right.\)
d.
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{2}\\cosx=3>1\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
f.
\(\Leftrightarrow cosx=-\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{3}+k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
h.
\(cos\left(3x+10^0\right)=-1\)
\(\Leftrightarrow3x+10^0=180^0+k360^0\)
\(\Leftrightarrow3x=170^0+k360^0\)
\(\Leftrightarrow x=\dfrac{1}{3}.170^0+k120^0\)
j.
\(cos\left[cos\left(x+2\right)\right]=1\)
\(\Leftrightarrow cos\left(x+2\right)=k2\pi\)
Do \(-1\le cos\left(x+2\right)\le1\Rightarrow-1\le k2\pi\le1\)
\(\Rightarrow k=0\)
\(\Rightarrow cos\left(x+2\right)=0\)
\(\Rightarrow x+2=\dfrac{\pi}{2}+n\pi\)
\(\Rightarrow x=-2+\dfrac{\pi}{2}+n\pi\)
\(cos^2x=\dfrac{1}{2}\Leftrightarrow2cos^2x-1=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
1.
Đường thẳng d' song song với d cần tìm có dạng: \(x-2y+m=0\left(m\in R\right)\)
Mà \(d'\) đi qua \(A=\left(1;0\right)\Rightarrow1+m=0\Leftrightarrow m=-1\)
\(\Rightarrow d:x-2y-1=0\)
C1:D C2:C C3:C C4:A C5:A
C6:A C7:A C8:D C9:B C10:C
C11:A C12:B C13:C C14:C C15:B
C16:D C17:D C18:D C19:B C20:B
C21:A C22:C C23:D C24:A C25D
\(sinx+2cosx=0\)
\(\Leftrightarrow sinx=-2cosx\) thay vào P có: \(P=\dfrac{2.-2cosx+3cosx}{-2cosx+cosx}=\dfrac{-cosx}{-cosx}=1\)
ĐK: ` x \ne 0; x \ne1`
`(x-1)/x>=(3x-1)/(x-1)`
`<=>((x-1)^2-x(3x-1))/(x(x-1))>=0`
`<=> -((2x-1)(x+1))/(x(x-1)) >= 0`
`<=> ((2x-1)(x+1))/(x(x-1)) <= 0`
Bảng xét dấu bạn tự kẻ nkaaaaa.
Vậy `S=[-1;0) \cup [1/2 ;1)`.
Đoán đề: \(\dfrac{x^2-1}{\left(x+1\right)\left(x^2-x-6\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-3\right)\left(x+2\right)}\ge0\)
Xét x-1=0 <=> x=1
x+1=0 <=> x=-1
x-3=0 <=> x=3
x+2=0 <=>x=-2
Bảng xét dấu:
Để VT \(\ge0\) <=> x\(\in\left(-2;-1\right)\cup\left(3;+\infty\right)\cup\left\{1\right\}\)
TH1: `m=0 `
`2x>0 <=> x>0`
`=>` Không thỏa mãn.
TH2: `m>0`
Bất PT có tập nghiệm là `RR <=> \Delta'<0`
`<=> (m-1)^2-m.4m<0`
`<=> m<-1 ; 1/3 <m`
Vậy `m in (0;+∞)` thỏa mãn.
TH1 là m=0 thì TH2 là \(m\ne0\)
Bpt có tập nghiệm là R <=> \(\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)
Đáp án: m\(\in\left(\dfrac{1}{3};+\infty\right)\)
\(tan\left(\dfrac{3\pi}{2}-\alpha\right)+cot\left(3\pi-\alpha\right)-cos\left(\dfrac{\pi}{2}-\alpha\right)+2.sin\left(\pi+\alpha\right)\)
\(=tan\left(\pi+\dfrac{\pi}{2}-\alpha\right)+cot\left(-\alpha\right)-sin\alpha+2\left(sin\pi.cos\alpha+cos\pi.sin\alpha\right)\)
\(=tan\left(\dfrac{\pi}{2}-\alpha\right)-cot\alpha-sin\alpha+2.-sin\alpha\)
\(=cot\alpha-cot\alpha-3sin\alpha\)
\(=-3sin\alpha\)