K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

a) Từ hình vẽ ta có: LP ⊥ MN; MQ ⊥ LN

ΔMNL có S là giao điểm của hai đường cao LP và MQ nên S chính là trực tâm của tam giác (định lí ba đường cao).

=> NS cũng là đường cao trong tam giác hay NS ⊥ LM (đpcm).

b) ΔNMQ vuông tại Q có góc LNP = 50o nên góc QMN = 40o

ΔMPS vuông tại P có góc QMP = 40o nên góc MSP = 50o

Vì hai góc MSP và PSQ là hai góc kề bù nên suy ra:

góc PSQ = 180o - 50o = 130o.

19 tháng 4 2017

Hướng dẫn:

a) Trong ∆NML có :

LP ⊥ MN nên LP là đường cao

MQ ⊥ NL nên MQ là đường cao

mà PL ∩ MQ = {S}

suy ra S là trực tâm của tam giác nên đường thằng SN chứa đường cao từ N hay

SN ⊥ ML

b) ∆NMQ vuông tại Q có ˆLNPLNP^ =500 nên ˆQMNQMN^ =400

∆MPS vuông tại Q có ˆQMPQMP^ =400 nên ˆMSPMSP^ =500

Suy ra ˆPSQPSQ^ =1300(kề bù)

NS lak gì?

LM lak gì?

Thiếu đề rồi bạn ơi

14 tháng 3 2016

Thiếu đề rồi bạn ơi

15 tháng 12 2018

+ Ta có : trong tam giác vuông, hai góc nhọn phụ nhau nên :

ΔNMQ vuông tại Q có:

Giải bài 59 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

13 tháng 4 2016

a) Chứng minh NS ⊥ LM

b) Khi  =500, hãy tính góc MSP và góc PSQ

Hướng dẫn:

a)  Trong ∆NML có : 

LP ⊥ MN nên LP là đường cao

MQ ⊥ NL nên MQ là đường cao

mà PL ∩ MQ = {S}

suy ra S là trực tâm của tam giác nên đường thằng SN chứa đường cao từ N hay

SN ⊥ ML

b) ∆NMQ vuông tại Q có  =50nên  =400

 ∆MPS vuông tại Q có  =40nên  =500

Suy ra  =1300(kề bù)

 

19 tháng 5 2019

Trong ΔMNL có:

LP ⊥ MN nên LP là đường cao của ΔMNL.

MQ ⊥ NL nên MQ là đường cao của ΔMNL.

Mà LP, MQ cắt nhau tại điểm S

Nên: theo tính chất ba đường cao của một tam giác, S là trực tâm của tam giác.

⇒ đường thẳng SN là đường cao của ΔMNL.

hay SN ⊥ ML.

6 tháng 5 2018

Xét tam giác MNK có

MQ vuông góc với MK

KB vuông góc với MN

MQ cắt KB tại S

=> S là trực tâm của tam giác MNK

=> NS vuông góc với MK

Ta có ^PNS + ^ PSN = ^SNQ+^NSQ = 90 độ

=> ^PNS + ^ PSN +^SNQ+^NSQ=180\(^0\)

MÀ ^PNS+^SNQ = 50 độ

=> ^PSN+^NSQ = 130 độ hay ^PSQ = 130 độ

NV
8 tháng 5 2023

a.

\(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp AC\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) 

\(\Rightarrow AC\perp\left(SBD\right)\)

Mà \(AC\in\left(SAC\right)\Rightarrow\left(SAC\right)\perp\left(SBD\right)\)

b.

\(SO\perp\left(ABCD\right)\Rightarrow OC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCO}\) là góc giữa SC và (ABCD)

\(OC=\dfrac{1}{2}AC=a\sqrt{2}\)

\(tan\widehat{SCO}=\dfrac{SO}{OC}=\sqrt{3}\Rightarrow\widehat{SCO}=60^0\)

c.

Gọi E là trung điểm CD, từ O kẻ \(OF\perp SE\)

OE là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=a\\OE||BC\Rightarrow OE\perp CD\end{matrix}\right.\)

\(\Rightarrow CD\perp\left(SOE\right)\)\(\Rightarrow CD\perp OF\)

\(\Rightarrow OF\perp\left(SCD\right)\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

Do \(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)=2OF\)

Hệ thức lượng: \(OF=\dfrac{OE.SO}{\sqrt{OE^2+SO^2}}=...\)

NV
8 tháng 5 2023

loading...

27 tháng 2 2020

a, tam giác ABC cân tại A (gt)

=> góc B = (180 - góc A) : 2

góc A = 50 (gt)

=> góc B = (180 - 50) : 2 

=> góc B = 65

b, xét tam giác AMB và tam giác AMC có : AB = AC do tam giác ABC cân tại A (gt)

góc ABC = góc ACB do tam giác ABC cân tại A (gT)

BM = MC do M là trđ của BC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

=> góc AMB = góc AMC (đn)

mà góc AMB + góc AMC = 180 (kb)

=> góc AMB = 90

=> AM _|_ BC (đn)

b, tam  giác AMB = tam giác AMC (Câu b)

=> góc MAB = góc MAC (đn) mà AM nằm giữa AB và AC 

=> AM là pg của góc BAC (đn)

27 tháng 2 2020

A B C M 1 1 2 2

A)VÌ \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT TAM GIÁC ABC

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(đ/l\right)\)

THAY\(50^o+\widehat{B}+\widehat{C}=180^o\)

                        \(\widehat{B}+\widehat{C}=130^o\)

\(\widehat{B}=\widehat{C}\)

THAY \(\widehat{C}+\widehat{C}=130^o\)

      \(2\widehat{C}=130^o\)

\(\widehat{C}=130^o:2=65^o\)     

\(\Rightarrow\widehat{B}=\widehat{C}=65^o\)

B)XÉT\(\Delta BAM\)\(\Delta CAM\)

  \(BA=CA\left(GT\right)\)

    \(\widehat{B}=\widehat{C}\left(GT\right)\)

\(BM=CM\left(GT\right)\)

\(\Rightarrow\Delta BAM=\Delta CAM\left(C-G-C\right)\)

\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)HAI GÓC TƯƠNG ỨNG

MÀ \(\widehat{M_1}+\widehat{M_2}=180^o\left(KB\right)\)

THAY\(\widehat{M_2}+\widehat{M_2}=180^o\)

\(2\widehat{M_2}=180^o\)

\(\widehat{M_2}=180^o:2=90^o\)

VẬY \(AM\perp BC\left(đpcm\right)\)

c) \(AM\perp BC\left(cmt\right)\)

=> AM LÀ ĐƯƠNG CAO CỦA TAM GIÁC ABC

TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG CHÍNH LÀ ĐƯỜNG PHÁP TUYẾN,PHÂN GIÁC,TRUNG TUYẾN

=> AM LÀ PHÂN GIÁC CỦA\(\widehat{BAC}\)