K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

gì đó???

..........

...........

17 tháng 6 2017

Đề bài thiếu.Và đây là một bài toán khá hay trong Casio.Mk sửa đề:

Cho \(a^2+a+1=0\).Tính \(P=a^{1981}+\dfrac{1}{a^{1981}}\).

Bài làm:

\(a^2+a+1=0\Rightarrow a^2+a=-1.\).

\(a^2+a+1=0\Rightarrow\left(a-1\right)\left(a^2+a+1\right)=0\Rightarrow a^3-1=0\Rightarrow a^3=1\).

\(P=a^{1981}+\dfrac{1}{a^{1981}}=\left(a^3\right)^{660}.a+\dfrac{1}{\left(a^3\right)^{660}.a}\)

\(P=a+\dfrac{1}{a}=a+\dfrac{a^3}{a}=a^2+a=-1\)

Vậy P=-1.

17 tháng 6 2017

Cách 1: Ta có: \(a^2+a+1\) = 0

=> \(\left(a-1\right)\left(a^2+a+1\right)\) = \(a^3-1\)

<=> \(0=a^3-1\) => a3 = 1

Thay a3 = 1 vào P ta được:

P = \(a^{1981}+\dfrac{1}{a^{1981}}\) = \(\left(a^3\right)^{660}.a+\dfrac{1}{\left(a^3\right)^{660}.a}=a+\dfrac{1}{a}\)

= \(\dfrac{a^2+1}{a}=\dfrac{-a}{a}\) ( Do a2 + a+ 1 = 0) = \(-1\)

P/s: Bài này khá nhiều cách nhưng đều khá tương tự nhau!

27 tháng 5 2016

Ta có: A = + + + .. +

=> A = )))))))))))))))))))))))))))))000000000000000000000000000