Cho x2+y2=1. Chứng minh rằng: (x+y)2\(\le\)2.
Giúp mk với, mới mk nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1+\sqrt{1+x^2}}{x}=\frac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\frac{2+\frac{4+1+x^2}{2}}{2x}=\frac{9+x^2}{4x}\)
tương tự : \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{9+y^2}{4y}\); \(\frac{1+\sqrt{1+z^2}}{z}\le\frac{9+z^2}{4z}\)
\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le\frac{\left(9+x^2\right)yz+\left(9+y^2\right)xz+\left(9+z^2\right)xy}{4xyz}\)
\(=\frac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\frac{9\frac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=\frac{4\left(xyz\right)^2}{4xyz}=xyz\)
Dấu " = " xảy ra khi x = y = z = \(\sqrt{3}\)
+ Từ bài toán tổng quát
(n-1).n.(n+1)=n3 - n => n3 = (n-1).n.(n+1) + n
\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2006^3}=\)
\(=\frac{1}{1.2.3+2}+\frac{1}{2.3.4+3}+\frac{1}{3.4.5+4}+\frac{1}{2005.2006.2007-2006}=A\)
\(\Rightarrow A< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2005.2006.2007}=B\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2005.2006.2007}\)
\(2B=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2007-2005}{2005.2006.2007}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(2B=\frac{1}{2}-\frac{1}{2006.2007}\Rightarrow B=\frac{1}{4}-\frac{1}{2.2006.2007}< \frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4}\)
Giải:
Do x và y là 2 đại lượng tỉ lệ thuận nên:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}\Rightarrow\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow\frac{y_1}{6}=\frac{y_2}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y_1}{6}=\frac{y_2}{12}=\frac{y_2-y_1}{12-6}=\frac{4}{6}=\frac{2}{3}\)
+) \(\frac{y_1}{6}=\frac{2}{3}\Rightarrow y_1=4\)
+) \(\frac{y_2}{12}=\frac{2}{3}\Rightarrow y_2=8\)
Vậy \(y_1=4;y_2=8\)
Bạn áp dụng bất đẳng thức sau để giải :
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*)
Áp dụng kết quả đó ta có
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)]
rồ tiếp tục áp dụng kết quả (*) ta lại có
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x)
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y)
Cái cuối cùng cũng tương tự như vậy
Bạn áp dụng bất đẳng thức sau để giải :
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*)
Áp dụng kết quả đó ta có
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)]
rồ tiếp tục áp dụng kết quả (*) ta lại có
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x)
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y)
Cái cuối cùng cũng tương tự như vậy
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\cdot1=2\ge\left(x+y\right)^2\)
Đẳng thức xảy ra khi \(x=y=\pm\dfrac{1}{\sqrt{2}}\)