Tìm x nguyên dương để M = \(\dfrac{2001-x}{2002-x}\) đạt giá trị dương bé nhất. Tìm giá trị ấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9$
\(P=2A:B=\frac{2(\sqrt{x}+1)}{x-9}: \frac{2}{\sqrt{x}-3}=\frac{2(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{2}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(P=1-\frac{2}{\sqrt{x}+3}\)
Để $P$ nhỏ nhất thì $\frac{2}{\sqrt{x}+3}$ lớn nhất
$\Leftrightarrow \sqrt{x}+3$ nhỏ nhất
Với $x$ nguyên dương, $\sqrt{x}+3$ nhỏ nhất bằng $\sqrt{1}+3=4$ khi $x=1$
$\Rightarrow P_{\min}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{1+1}{1+3}=\frac{1}{2}$
\(A=\frac{2014-x}{2015-x}\)
\(\Rightarrow A=\frac{2015-x-1}{2015-x}\)
\(\Rightarrow A=1-\frac{1}{2015-x}\)
Để A có Min thì \(\frac{1}{2015-x}\)có GTLN \(\Rightarrow2015-x\)phải đạt GTNN và \(\frac{1}{2015-x}>0\)
\(\Rightarrow2015-x=1\Leftrightarrow x=2014\)
Vậy Min A = 1-1=0<=> x = 2014
\(A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}\)
A nhỏ nhất khi \(\frac{1}{2015-x}>0\)lớn nhất, để \(\frac{1}{2015-x}\)lớn nhất khi 2015-x>0 nhỏ nhất. 2015-x nhỏ nhất khi x lớn nhất và x là số nguyên dương => x=2014
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc