Xác định hệ số tự do c để đa thức f(x) = 2x^2 -3x+c có nghiệm là x = -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x = 5 vào đa thức ta được:
4.5^2 - 7.5 + C
<=> 4.25 - 35 + C = 0
<=> 100 - 35 + C = 0
<=> 65 + C = 0
<=> C = 0 - 65
<=> C = -65
Vậy hệ số tự do C = - 65 để có nghiệm bằng 5
a,G(x)=2x-6
<=>2x-6=0
<=>2x=6
<=>x=3
Vậy nghiệm của G(x) là 3
b,hệ số là 0
a,2x-6=0
<=>x=3
b,\(a^2-3.\left(-2\right)+18=0\Leftrightarrow a^2=-24\)(Vô nghiệm)
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
Suy ra f(-2) = m . ( -2 )^2 + 2 . ( -2 ) + 16 = 0
Suy ra 4m - 4 + 16 = 0
4m - 4 = -16
4m = -16 + 4 = -12
m = -12 : 4 = -3
Vậy m = -3
a, A(x)+B(x)=\(\left(3x^2-4x+5\right)+\left(3x^2+2x-5\right)\)
A(x)+B(x)=\(3x^2-4x+5+3x^2+2x-5\)
A(x)+B(x)=\(6x^2-2x\)
b, đa thức A(x) bậc 3
đa thức B(x) bậc 3
c, A(x)-B(x)=\(\left(3x^2-4x+5\right)-\left(3x^2+2x-5\right)\)
A(x)-B(x)=\(3x^2-4x+5-3x^2-2x+5\)
A(x)-B(x)=-6x+10
\(\Rightarrow\) A(x)-B(x) bậc 1
a,ta có:
f(1)= a.12+2.1+b=0
=> a+2+b=0
=> a+b=-2 (1)
f(-2)= a.(-2)2+2.(-2)+b=0
=> 4a - 4 + b=0
=> 4a+b=4 (2)
Trừ vế (2) cho vế (1) ,ta có:
3a=6
=>a= 2
thay a =2 vào (1), ta có: 2+b=-2 => b= -4
Vậy a=2, b=-4
b,Do g(x) có 2 nghiệm 1 và -1 nên:
g(1)=3.13 + a.12+b.1+c = 0
=> 3+a+b+c =0
=> a+b+c = -3 (1)
g(-1) = 3. (-1)3+a.(-1)2+b(-1)+c=0
=> -3 +a -b+c =0
=> a-b+c=3 (2)
Trừ vế (1) cho vế (2), ta có:
2b=-6
=> b=-3
thay b=-3 vào (1), ta có:
a-3+c=-3
=> a+c=0
=> a+ 2a +1=0
=> 3a=-1
=> a= \(-\frac{1}{3}\)
Khi đó ta có: \(-\frac{1}{3}+c=0\Rightarrow c=\frac{1}{3}\)
Vậy:...
ta có f(-2)=\(2.\left(-2\right)^2-3.\left(-2\right)+c=0\)(vì -2 là nghiệm của đa thức)
\(f\left(-2\right)=14+c=0\Leftrightarrow c=-14\)
vậy hệ số c là -14
Là sao ta