K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2015

pham thi ha linh sai

26 tháng 9 2015

\(A=\frac{2010}{2}+\frac{2010}{6}+...+\frac{2010}{9900}\)

\(=2010.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)

\(=2010.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=2010.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=2010.\left(1-\frac{1}{100}\right)=2010.\frac{99}{100}\)

\(=\frac{19899}{10}\)

12 tháng 12 2016

dãy số 2, 6, 12, 20...9900 tách ra thành 1.2, 2.3, 3.4, 4.5,..., 99.100 
nghĩa là mình có công thức ∑ (i=1 -> 99) (2010) / (99.(99+1)) 
(2010). ∑(i=1 -> 99) (99/100) 
2010 . (99/100) = 1989,9

19 tháng 12 2016

đề sai viết lại đi

19 tháng 12 2016

\(A=\frac{2010}{2}+\frac{2010}{2}+\frac{2010}{6}+\frac{2010}{12}+...+\frac{2010}{9900}\)

<=>\(A=2010\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)

<=>\(A=2010\left(\frac{1}{2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

<=>\(A=2010\left(\frac{1}{2}+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

<=>\(A=2010\left(\frac{1}{2}+1-\frac{1}{100}\right)\)

<=>\(A=2010.\frac{149}{100}\)

<=>\(A=\frac{29949}{10}\)

Nếu như đề của bạn viết bị đúng thì ko sao, nhưng nếu đề bạn có bị thừa phân số 2010/2 thì chỉnh sửa lại bài làm bên trên 1 chút

16 tháng 2 2021

??????????????????????????????????????????

10 tháng 1 2016

dãy số 2, 6, 12, 20...9900 tách ra thành 1.2, 2.3, 3.4, 4.5,..., 99.100 
nghĩa là mình có công thức ∑ (i=1 -> 99) (2010) / (99.(99+1)) 
(2010). ∑(i=1 -> 99) (99/100) 
2010 . (99/100) = 1989,9

tick nha

14 tháng 1 2016

\(2009-\frac{2010}{3}-\frac{2010}{6}-\frac{2010}{15}-...-\frac{2010}{45}\)

\(=2009-2010.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{15}+...+\frac{1}{45}\right)\)

\(=2009-2010.\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{90}\right)\)

Có vấn đề chỗ 2010/15 bạn xem lại