Cho A= 1+4+4^2+4^3+..+4^99
B= 4^100 . Chứng minh:A<B/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
Lời giải:
$A=1+4+4^2+4^3+...+4^{99}$
$4A=4+4^2+4^3+4^4+....+4^{100}$
$\Rightarrow 4A-A=4^{100}-1$
$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$
4A=4+4^2+4^3+4^4+....+4^100
4A-A=4^100-1
=>3A=4^100-1 mà 4^100-1<4^100
=>3A<B =>A<B/3(đpcm)
Ta có: A = 1+4+4^2+4^3+...+4^99
=> 4A = 4.(1+4+4^2+4^3+...+4^99)
=> 4A = 4+4^2+4^3+...+4^99+4^100
=> 4A - A = (4+4^2+4^3+...+4^99+4^100) - (1+4+4^2+4^3+...+4^99)
=> 3A = 4^100 - 1
=> A = 4^100-1/3 < 4^100/3 mà B = 4^100
=> A < 4^100/3
Bài toán đã được chứng minh.
\(A=1+4+4^2+4^3+...+4^{99}\)
\(4A=4+4^2+4^3+4^4+...+4^{100}\)
\(4A-A=\left(4+4^2+4^3+4^4+...+4^{100}\right)-\left(1+4+4^2+4^3...+4^{99}\right)\)
\(3A=4^{100}-1\)
\(A=\frac{4^{100}}{3}-\frac{1}{3}=\frac{B}{3}-\frac{1}{3}\)
Vậy \(A< \frac{B}{3}\)
A=1+4+42+...+499
4A=4+42+43+...+4100
4A-A=3A=(4+42+...+4100)-(1+4+42+...+499)
3A=4100-1
Ta thấy: 3A<B =>A<B/3 (điều phải chứng minh)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
\(=>4A=4+4^2+...+4^{99}+4^{100}\)
\(=>4A-A=\left(4+4^2+...+4^{99}+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)
\(=>3A=4^{100}-1\)
\(=>A=\frac{4^{100}-1}{3}\)
\(\frac{1}{3}B=\frac{4^{100}}{3}\)
=> A<\(\frac{1}{3}B\)
A = 1 + 4 + 42 + 43 + ... + 499
4A = 4( 1 + 4 + 42 + 43 + ... + 499 )
4A = 4 + 42 + 43 + ... + 4100
4A - A = 3A
= ( 4 + 42 + 43 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499
= 4100 - 1
=> \(A=\frac{4^{100}-1}{3}\)
B = 4100 => \(\frac{1}{3}B=4^{100}\cdot\frac{1}{3}=\frac{4^{100}}{3}\)
\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{1}{3}B\left(đpcm\right)\)
\(A=1+4+4^2+...+4^{99}\)
=>\(4A=4+4^2+4^3+...+4^{100}\)
=>\(4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{98}\right)\)
=>\(3A=4^{100}-1\)
=>\(A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)
Ta có đpcm
4A=4+42+43+44+...+499+4100
=> 4A-A=4+42+43+44+...+499+4100-(1+4+42+43+44+...+499)=4100-1
=> 3A=4100-1 => A=\(\frac{4^{100}-1}{3}=\frac{4^{100}}{3}-\frac{1}{3}=\frac{B}{3}-\frac{1}{3}\)
=> A < B/3
A=1+4+42+43+.......+499 4A=4+42+43+44+.....+4100 4A-A=4+42+43+44+.....+4100 -1-4-42-43-.......-499 3A=4100-1 => A=(4100-1)/3 Vì 4100>4100-1 nên (4100-1)/3 < 4100/3 HAY A<B/3(ĐPCM)
Ta có: \(A=1+4+4^2+...+4^{99}\)
\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\)
\(\Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}-1\)
\(\Rightarrow A=\dfrac{4^{100}-1}{3}\)
Vì \(4^{100}-1< 4^{100}\) nên \(\dfrac{4^{100}-1}{3}< \dfrac{4^{100}}{3}\)
\(\Rightarrow A< \dfrac{B}{3}\left(đpcm\right)\)
Vậy...