K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E M 1 2 3 F

Ta có : \(\Delta ABD\) đều

\(\Rightarrow\widehat{A_2}=60^o\)

\(\Delta ACE\) đều

\(\Rightarrow\widehat{A_3}=60^o\)

\(\Rightarrow\widehat{A_2}=\widehat{A_3}\)

Ta lại có : \(\widehat{A_1}+\widehat{A_2}=\widehat{DAC}\)

\(\widehat{A_1}+\widehat{A_3}=\widehat{BAE}\)

Mặt khác \(\widehat{A_1}chung\)

\(\widehat{A_2}=\widehat{A_3}\) (cmt)

Do đó : \(\widehat{BAE}=\widehat{DAC}\)

Xét \(\Delta ABE\)\(\Delta ADC\) có:

\(AB=AD\) ( \(\Delta ABD\) đều)

\(\widehat{BAE}=\widehat{DAC}\)

\(AE=AC\)(\(\Delta ACE\) đều)

Do đó : \(\Delta ABE=\Delta ADC\)

\(\Rightarrow\widehat{AEB}=\widehat{ACD}\) ( hai góc tương ứng )

b) Gọi giao điểm của AC và BE là F

Trong \(\Delta AFE\) có :

\(\widehat{A_3}+\widehat{AFE}+\widehat{E}=180^o\) ( định lí )

Trong \(\Delta MFC\) có :

\(\widehat{MFC}+\widehat{FMC}+\widehat{FCM}=180^o\) ( định lí )

Mặt khác

\(\widehat{E}=\widehat{FCM}\)( theo câu a )

\(\widehat{MFC=}\widehat{AFE}\) ( hai góc đối đỉnh )

\(\Rightarrow\widehat{FMC}=\widehat{A_3}\)

\(\widehat{A_3}=60^o\)(\(\Delta ACE\)đều )

\(\Rightarrow\)\(\widehat{FMC}=60^o\)

Ta lại có : \(\widehat{FMC}+\widehat{BMC}=180^o\)( hai góc kề bù )

hay \(60^o+\widehat{BMC}=180^o\)

\(\Rightarrow\widehat{BMC}=180^o-60^o=120^o\)(đpcm)

a, Ta có: vì tam giác ABD là tam giác đều

=> góc DAB = 60 độ

vì tam giác ACE là tam giác đều

=>góc CAE = 60 độ

Lại có: 60 độ + góc CAB = 60 độ + góc CAB

<=>góc DAB+ góc CAB = góc CAE + góc CAB

=> góc DAC = góc BAE

Xét tam giác ABE và tam giác ADC có:

AB = AD (gt)

góc BAE = góc DAC (chứng minh trên)

AE=AC (gt)

=> tam giác ABE = tam giác ADC

b) Gọi giao điểm của AB và CD là I

Vì tam giác ABE = tam giác ADC

=> góc ABE = góc ADC hay góc IBM = góc ADI

Mà góc BIM = góc AID (đối đỉnh)

=>góc DAI = góc IMB

=> góc IMB = 60 độ

Mà góc BMC = góc DMC - góc DMB

góc BMC = 180 độ - 60 độ

=> góc BMC = 120 độ

A B C D E M I

2 tháng 5 2018

Hình vẽ : 

2 tháng 5 2018

a ) 

Vì ΔABDΔABD là tam giác đều(gt) ⇒DABˆ⇒DAB^=600

ΔACEΔACE là tam giác đều(gt) ⇒EACˆ⇒EAC^=600

⇒DABˆ+BACˆ=EACˆ+BACˆ⇒DAB^+BAC^=EAC^+BAC^

⇒DACˆ=BAEˆ⇒DAC^=BAE^

Xét ΔDACΔDAC và ΔBAEΔBAE có:

DA=BA(vì ΔABDΔABD là tam giác đều)

DACˆ=BAEˆDAC^=BAE^ (cmt)

AC=AE(vì ΔACEΔACE là tam giác đều)

⇒ΔDAC=ΔBAE(c.g.c)

b, Ta có: ^ AEM + ^MEC = 60 độ

mà ^AEM = ACD (Tam giác ABE = tam giác ADC)

=>^MEC + ^MCA = 60 độ

Ta lại có: ^ACE = 60 độ

=>^MCA + ^ACE+ ^MEC = 120 độ

mà ^MCA + ^ACE = ^MCE

=> ^MCE + ^MEC = 120 độ

Ta lại có: ^EMC + ^MCE + ^CEM = 180 độ

mà ^MCE + ^CEM =120 độ (cm trên)

=>^EMC + 120 độ =180 độ

=> ^EMC = 180 độ - 120 độ =60 độ

Ta lại có: ^BMC + ^EMC = 180 độ

mà ^EMC = 60 độ

=> ^BMC + 60 độ =180 độ

=> ^BMC = 180 độ - 60 độ = 120 độ (đpcm)

3 tháng 5 2016

a)

ta có:

DAC=60+BAC

EAB=60+BAC

=> DAC=EAB

xét tam giác ABE và tam giác ADE có:

AD=AB( tam giác ABD đều)

AC=AE( tam giác ACE đều)

DAC=BAE(cmt)

=> tam giác ABE=ADC(c.g.c)

25 tháng 9 2019

giúp mình vs các bạn ơi

4 tháng 9 2019

Bn tự vẽ hình nha

a)Ta có:\(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}\)

\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}\)

\(\widehat{DAB}=\widehat{CAE}\left(=60^o\right)\)

\(\Rightarrow\widehat{DAC}=\widehat{BAE}\)

Xét\(\Delta ABE\)\(\Delta ADC\) có:AB=AD(\(\Delta ABD\)đều)

\(\widehat{BAE}=\widehat{DAC}\left(cmt\right)\)

AE=AC(\(\Delta ACE\)đều)

Do đó:\(\Delta ABE=\Delta ADC\left(c-g-c\right)\)

4 tháng 9 2019

Sau 1 hồi mò mẫm thì mik ra đc cái hình này hơi sấu thông cảm

AECBDM

16 tháng 1 2020

A D E B C I M N K F

a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE 

Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều ) 

                         ^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE 

                           CA = AE ( \(\Delta\)CAE đều )

Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)

=>  ^ABE = ^ADC (2)

+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )

                                                  ^KDA = ^KBI( theo  ( 2)  )

                    mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)

=>  ^KIB = ^KAD = ^BAD=  60\(^o\)

=> ^DIB = 60\(^o\)

b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE 

=> DM  = BN (3) 

+) Xét \(\Delta\)BAN và \(\Delta\)DAM 

có: BN = DM ( theo (3)

     ^ABN = ^ADM ( theo (2)

     AB = AD ( \(\Delta\)ADB đều )

=> \(\Delta\)BAN = \(\Delta\)DAM  (4) 

=> AN = AM  => \(\Delta\)AMN cân tại A  (5)

+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM  

=> ^MAN = ^DAB = 60\(^o\)(6)

Từ (5); (6) => \(\Delta\)AMN đều 

c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I 

mà ^BIF = ^BID = 60\(^{\text{​​}o}\)( theo (a))

=> \(\Delta\)FIB đều  (7)

=> ^DBA = ^FBI( =60\(^o\))

=> ^DBF + ^FBA = ^FBA + ^ABI 

=> ^DBF = ^ABI  

Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )

Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB  => ^AIB = ^DFB = 180\(\text{​​}^o\)- ^BFI = 180\(\text{​​}^o\)-60\(\text{​​}^o\)=120\(\text{​​}^o\)

+) Mặt khác ^BID = 60 \(\text{​​}^o\)( theo (a) ) 

=> ^DIE = 180\(\text{​​}^o\)- ^BID = 120 \(\text{​​}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^AIE = ^DIE - ^DIA = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^DIA = ^AIE ( = 60\(\text{​​}^o\)

=> IA là phân giác ^DIE.