K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

ĐK : m,n > 0

\(=\frac{\left(\sqrt{m}-\sqrt{n}\right)\left(\sqrt{m}+\sqrt{n}\right)}{\sqrt{m}-\sqrt{n}}+\frac{\left(\sqrt{m}+\sqrt{n}\right)^2}{\sqrt{m}+\sqrt{n}}\)( mẫu phân thức 2 phải là như này chứ nhỉ )

\(=\left(\sqrt{m}+\sqrt{n}\right)+\left(\sqrt{m}+\sqrt{n}\right)=2\left(\sqrt{m}+\sqrt{n}\right)\)

26 tháng 11 2020

\(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)

Biến đổi ta được : \(\left(\sqrt{a'b}-\sqrt{ab'}\right)^2+\left(\sqrt{a'c}-\sqrt{ac'}\right)^2+\left(\sqrt{b'c}-\sqrt{bc'}\right)^2=0\)

29 tháng 8 2018

Nhân tử và mẫu của biểu thức với \(\sqrt{m}+\sqrt{n}-\sqrt{m+n}.\)

\(\Rightarrow\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}+\sqrt{m+n}\right)\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)

\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}\)

\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+n+2\sqrt{mn}-m-n}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)

22 tháng 8 2020

Ta có: \(\frac{2\sqrt{mn}}{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{(\sqrt{m}+\sqrt{n}+\sqrt{m+n})\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)

\(=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+2\sqrt{mn}+n-m-n}\)

\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{2\sqrt{mn}}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)( đpcm )

Áp dụng: Với \(m=2\)và \(n=5\)và \(mn=10\)\(m+n=7\)ta có:

\(\frac{2\sqrt{10}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=\sqrt{2}+\sqrt{5}-\sqrt{2+5}=\sqrt{2}+\sqrt{5}-\sqrt{7}\)

9 tháng 2 2018

\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)  \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)

\(M=3\)

9 tháng 2 2018

b) \(\sqrt{x}=M\)

\(\Leftrightarrow x=M^2\)

thay vào ta có: 

\(x=3^2\)

\(x=9\)

c) \(M=3\in N\)

\(\Rightarrow x=3\)

d) \(M>1\Leftrightarrow x>1\)

19 tháng 6 2015

a, bạn chỉ cần lập công thức tông quát :

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cái này bạn chỉ cần trục căn thức ở mẫu chưng minh xong áp dụng vào luôn là ra

a, kq : 4/5

b,\(1-\frac{1}{\sqrt{n+1}}\)

c,d chưa nghĩ ra

18 tháng 6 2015

  ta có:  \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{\left(n+1\right)n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{\left(n+1\right)n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

nên: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}=\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)\(=1-\frac{1}{5}=\frac{4}{5}\)