Cho f(x)=\(x^{2009}-2008\times x^{2008}-2008x^{2007}-...-2008x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=2009\)
\(\Rightarrow x-1=2008\left(1\right)\)
Thay (1) vào A ta được:
\(A=x^{2009}-2008x^{2008}-2008x^{2007}-...-2008x+1\)
\(A=x^{2009}-\left(x-1\right)x^{2008}-...-\left(x-1\right)x+1\)
\(A=x^{2009}-x^{2009}+x^{2008}-...-x^2-x+1\)
\(A=-x+1\)
\(A=-2009+1\)
\(A=-2008\)
Lộn đề
\(A=x^{2009}-2008x^{2008}-2008x^{2007}-...-2008x+1\)1
x=2009x=2009
⇒x−1=2008(1)⇒x−1=2008(1)
Thay (1) vào A ta được:
A=x^2009−2008x^2008−2008x^2007−...−2008x+1
A=x^2009−(x−1)x^2008−...−(x−1)x+1
A=x^2009−x^2009+x^2008−...−x^2−x+1
A=−x+1
A=−2009+1
A=−2008
\(x=2009\Leftrightarrow x-1=2008\\ \Leftrightarrow A=x^x-\left(x-1\right)x^{x-1}-\left(x-1\right)x^{x-2}-...-\left(x-1\right)x+1\\ \Leftrightarrow A=x^x-x^x+x^{x-1}-x^{x-1}+x^{x-2}-...-x^2-x+1\\ \Leftrightarrow A=1-x=1-2009=-2008\)
x=2009 => 2008 = x-1
Thay x=2009 và 2008 = x -1 vào A:
\(A=x^{2009}-\left(x-1\right)\cdot x^{2008}-\left(x-1\right)\cdot x^{2007}-...-\left(x-1\right)\cdot x+1\)
\(=x^{2009}-x^{2009}+x^{2008}-x^{2008}+.....-x^2+x+1\)
\(=x+1=2009+1=2010\)
A = x2009 - 2008x2008 - 2008x2007 - ... - 2008x + 1
x = 2009 => 2008 = x - 1
Thế vào A ta được :
A = x2009 - ( x - 1 )x2008 - ( x - 1 )x2007 - ... - ( x - 1 )x + 1
= x2009 - ( x2009 - x2008 ) - ( x2008 - x2007 ) - ... - ( x2 - x ) + 1
= x2009 - x2009 + x2008 - x2008 + x2007 - ... - x2 + x + 1
= x + 1
= 2009 + 1 = 2010
Vậy A = 2010