So sánh 2 biểu thức A và B biết:
A=\(\dfrac{10^{2007}+1}{10^{2008}+1}\)
B=\(\dfrac{10^{2008}+1}{10^{2009}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân cả tử và mẫu của a cho 10 ta được A=10^2008/10^2009 (nhân cả tử và mẫu cho 1 số thì giá trị của A vẫn k đổi em nhé)
so sánh A=10^2008/10^2009 với B=10^2008/10^2009 vì cùng tử và 2 mẫu bằng nhau nên A=B
\(10A=\dfrac{10^{2007}+10}{10^{2007}+1}=\dfrac{10^{2007}+1+9}{10^{2007}+1}=1+\dfrac{9}{10^{2007}+1}\left(1\right)\)\(10B=\dfrac{10^{2008}+10}{10^{2008}+1}=\dfrac{10^{2008}+1+9}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\left(2\right)\)Từ (1) và ( 2 ) suy ra A>B
\(A=\dfrac{2008^{2008}+1}{2008^{2009}+1}\)
\(2008\cdot A=\dfrac{2008^{2009}+2008}{2008^{2009}+1}\)
\(=\dfrac{2008^{2009}+1+2007}{2008^{2009}+1}\)
\(=1+\dfrac{2007}{2008^{2009}+1}\)
\(B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
\(2008\cdot B=\dfrac{2008^{2008}+2008}{2008^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2007}{2008^{2008}+1}\)
\(=1+\dfrac{2007}{2008^{2008}+1}\)
Ta có: \(2008^{2009}+1>2008^{2008}+1\)
\(\Rightarrow\dfrac{1}{2008^{2009}+1}< \dfrac{1}{2008^{2008}+1}\)
\(\Rightarrow\dfrac{2007}{2008^{2009}+1}< \dfrac{2007}{2008^{2008}+1}\)
\(\Rightarrow1+\dfrac{2007}{2008^{2009}+1}< 1+\dfrac{2007}{2008^{2008}+1}\)
hay \(A < B\)
#\(Toru\)
Bài 2:
a: \(5^{2008}+5^{2007}+5^{2006}\)
\(=5^{2006}\left(5^2+5+1\right)=5^{2006}\cdot31⋮31\)
b: \(8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
\(A=\dfrac{10^{2006}+1}{10^{2007}+1}\)
\(10A=\dfrac{10^{2007}+10}{10^{2007}+1}=\dfrac{10^{2007}+1+9}{10^{2007}+1}=1+\dfrac{9}{10^{2007}+1}\left(1\right)\)
\(B=\dfrac{10^{2007}+1}{10^{2008}+1}\)
\(10B=\dfrac{10^{2008}+10}{10^{2008}+1}=\dfrac{10^{2008}+1+10}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\left(2\right)\)
Từ (1)và (2)=>A>B
Chúc Bạn học tốt ,có nhiều thành công trong học tập
a) Xét:
\(a>b\)
\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+m}{b+m}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{a+m}\)
\(a< b\)
\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
\(a=b\)
\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+m}{b+m}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+m}{b+m}=1\)
Mk chỉ áp dụng tính 1 câu,câu sau làm tương tự
b)
Ta có:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^{1993}+1}{10^{1992}+1}< 1\)
\(B< \dfrac{10^{1993}+1+9}{10^{1992}+1+9}\Rightarrow B< \dfrac{10^{1993}+10}{10^{1992}+10}\Rightarrow B< \dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\Rightarrow B< \dfrac{10^{1992}+1}{10^{1991}+1}=A\)
\(B< A\)
@@ ~ học tốt ~
Áp dụng bất đẳng thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N;b\ne0\right)\)
Ta có : \(B=\dfrac{10^{2007}+1}{10^{2008}+1}< 1\)
\(\Leftrightarrow B=\dfrac{10^{2007}+1}{10^{2008}+1}< \dfrac{10^{2007}+1+9}{10^{2008}+1+9}=\dfrac{10^{2007}+10}{10^{2008}+10}=\dfrac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\dfrac{10^{2006}+1}{10^{2007}+1}=A\)
\(\Leftrightarrow B< A\)
10A=10*\(\frac{10^{2006}+1}{10^{2007}+1}\) 10B=10*\(\frac{10^{2007}+1}{10^{2008}+1}\)
10A=\(\frac{10^{2007}+1+9}{10^{2007}+1}\) 10B=\(\frac{10^{2008}+1+9}{10^{2008}+1}\)
10A=1+\(\frac{9}{10^{2007}+1}\) 10B=1+\(\frac{9}{10^{2008}+1}\)
Vì \(\frac{9}{10^{2007}+1}\)>\(\frac{9}{10^{2008}+1}\)=>1+\(\frac{9}{10^{2007}+1}\)>1+\(\frac{9}{10^{2008}+1}\)
Nên 10A>10B=>A>B
Ta có: \(A=\frac{10^{2006}+1}{10^{2007}+1}\)
\(=>10A=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1+9}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
\(B=\frac{10^{2007}+1}{10^{2008}+1}\)
\(=>10B=\frac{10^{2008}+10}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}=\frac{10^{2008}+1}{10^{2008}+1}+\frac{9}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)
Vì \(10^{2007}+1< 10^{2008}+1=>\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}=>1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}=>10A>10B=>A>B\)
Cách 2:
Ta có: \(10A=\dfrac{10^{2008}+10}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\)
\(10B=\dfrac{10^{2009}+10}{10^{2009}+1}=1+\dfrac{9}{10^{2009}+1}\)
Vì \(\dfrac{9}{10^{2008}+1}>\dfrac{9}{10^{2009}+1}\Rightarrow1+\dfrac{9}{10^{2008}+1}>1+\dfrac{9}{10^{2009}+1}\)
\(\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
A<B