Cho tam giác ABC. Chứng minh rằng :
a) Góc A nhọn khi và chỉ khi \(a^2< b^2+c^2\)
b) Góc A tù khi và chỉ khi \(a^2>b^2+c^2\)
c) Góc A vuông khi và chỉ khi \(a^2=b^2+c^2\)Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác ABC, theo Hệ quả định lý Cô sin ta luôn có :
Mà ta có 2.bc > 0 nên cos A luôn cùng dấu với b2 + c2 – a2.
a) Góc A nhọn ⇔ cos A > 0 ⇔ b2 + c2 – a2 > 0 ⇔ a2 < b2 + c2.
b) Góc A tù ⇔ cos A < 0 ⇔ b2 + c2 – a2 < 0 ⇔ a2 > b2 + c2.
c) Góc A vuông ⇔ cos A = 0 ⇔ b2 + c2 – a2 = 0 ⇔ a2 = b2 + c2.
Theo định lý côsin ta có \(a^2=b^2+c^2-2bc.cosA\)
Khi \(a^2=b^2+c^2-bc\)thì \(2cosA=1\Rightarrow cosA=\frac{1}{2}\Rightarrow\widehat{A}=60^o\)
Khi \(a^2=b^2+c^2+bc\) thì \(-2cosA=1\Rightarrow cosA=-\frac{1}{2}\)(Khúc này để chứng minh ∠A = 120o khi và chỉ khi a 2 = b 2 + c 2 + bc. mà nó ra vầy mik chịu á , bn xem lại đề ik nha)
a)Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI ﴾1﴿
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
NHỚ TK MK NHA
4/Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc(cái này tự làm ngược nha bn)
5
Vẽ tam giác ABC cân tại A có góc A bằng 36 độ. Và BC=1.Khi đó góc B = góc C = 72 độ.
Vẽ BD phân giác góc B , DH vuông góc AB. Đặt AH=BH=x, ta có AB=AC=2x và DC=2x-1
Cm được tam giác ABD và BCD cân => AD=BD=BC=1
cos A = cos 36 = AH/AD=x/1=x
Vì BD là đường phân giác nên AD/DC=AB/AC => \(\frac{1}{2x-1}=\frac{2x}{1}\)
=> \(4x^2-2x-1=0\Leftrightarrow\left(2x-\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(\Leftrightarrow\left(2x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(2x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{4}\left(N\right)\\x=\frac{1-\sqrt{5}}{4}< 0\left(L\right)\end{cases}}\)
Vậy cos 36o = (1 + √5)/4
Áp dụng định lí cosin trong tam giác ABC, ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)
Ta có: \(\widehat A = {90^o}\) (tam giác ABC vuông tại A) \( \Leftrightarrow \cos A = \cos {90^o} = 0\)
\( \Leftrightarrow B{C^2} = A{B^2} + A{C^2}\) (đpcm)
1,Ta có:4(2a+3b)+(9a+5b)
=8a+12b+9a+5b
=17a+17b chia hết cho 17
Vì (2a+3b) chia hết cho 17
=>4(2a+3b) chia hết cho 17
=>9a+5b chia hết cho 17
=>đpcm
Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
Vậy ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc