K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tam giác ABC vuông tại A trung tuyến AM có AB=5cm,BC=13cm.trên tia đối của tia MA lấy điểm H sao cho MA=MH.                                                                                                               a,CM:BH//BC,BH=BC                                                                                                                     b,CM:BC = AH                                                                                                                     ...
Đọc tiếp

cho tam giác ABC vuông tại A trung tuyến AM có AB=5cm,BC=13cm.trên tia đối của tia MA lấy điểm H sao cho MA=MH.                                                                                                               a,CM:BH//BC,BH=BC                                                                                                                     b,CM:BC = AH                                                                                                                               c,Gọi I là trung điểm của AM tia BI cắt AC tại D.qua M kẻ đường thẳng song song với BD cắt AC tại E.CM: ID=1/2 EM                                                                                             d, tính độ dài BI

1

b: Xét tứ giác ABHC có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AH

Do đó: ABHC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABHC là hình chữ nhật

hay BC=AH

29 tháng 12 2021

a: AM=6,5cm

29 tháng 12 2021

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà AD=BC

nên ABDC là hình chữ nhật

29 tháng 12 2021

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà AD=BC

nên ABDC là hình chữ nhật

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13(cm)

b) Xét ΔMKC và ΔMAB có 

MK=MA(gt)

\(\widehat{KMC}=\widehat{AMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMKC=ΔMAB(c-g-c)

31 tháng 1 2017

Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

1 tháng 5 2022

undefined

Áp dụng định lý pytago ta có :

`AC^2+AB^2=BC^2`

hay `16^2+12^2=BC^2`

`=>BC^2=400`

`=>BC=20(cm)`

1 tháng 5 2022

Tham khảo : 

undefined

undefined

23 tháng 11 2023

1: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

nên ABNC là hình bình hành

Hình bình hành ABNC có \(\widehat{BAC}=90^0\)

nên ABNC là hình chữ nhật

2:

a: Xét ΔABC có

M là trung điểm của BC

MH//AB

Do đó: H là trung điểm của AC

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)

Xét tứ giác AMCE có

H là trung điểm chung của AC và ME

nên AMCE là hình bình hành

Hình bình hành AMCE có MA=MC

nên AMCE là hình thoi

=>\(C_{AMCE}=4\cdot AM=4\cdot2,5=10\left(cm\right)\)

3: Xét ΔNAB có

M,K lần lượt là trung điểm của NA,NB

=>MK là đường trung bình của ΔNAB

=>\(MK=\dfrac{AB}{2}\)

AMCE là hình thoi

=>AE//CM và AE=CM

AE//CM

\(M\in BC\)

Do đó: AE//BM

AE=CM

CM=BM

Do đó: AE=BM

Xét tứ giác ABME có

AE//MB

AE=MB

Do đó: ABME là hình bình hành

=>ME=AB

mà MK=1/2AB

nên \(\dfrac{ME}{MK}=1:\dfrac{1}{2}=2\)

=>ME=2MK

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{20}{2}=10\left(cm\right)\)

Xét ΔAEF có 

M\(\in\)AE(gt)

B\(\in\)AF(gt)

\(\dfrac{AM}{ME}=\dfrac{AB}{BF}\left(\dfrac{10}{5}=\dfrac{12}{6}=2\right)\)

Do đó: MB//EF(Định lí Ta lét đảo)

hay BC//EF(Đpcm)

a) Cm \(AD\cdot BC=AB\cdot DC\)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(AD\cdot BC=AB\cdot DC\)(đpcm)