Cho tứ giác ABCD.Gọi O là điểm nằm trong tứ giác ABCD.CM
OA+OB+OC+OD<AB+BC+CD+DA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ CH vuông góc với OB tại H. Theo quan hệ đường xiên hình chiếu:
\(CH\le OC\Leftrightarrow CH.OB\le OC.OB\Leftrightarrow2.S_{BOC}\le OC.OB\)(Do \(S_{BOC}=\frac{CH.OB}{2}\))
Áp dụng BĐT Cauchy, ta có: \(OC.OB\le\frac{OC^2+OB^2}{2}\)
\(\Rightarrow2.S_{BOC}\le\frac{OC^2+OB^2}{2}\left(1\right)\). Chứng minh tương tự ta được:
\(2.S_{AOB}\le\frac{OA^2+OB^2}{2}\left(2\right);2.S_{DOC}\le\frac{OD^2+OC^2}{2}\left(3\right);2.S_{AOD}\le\frac{OA^2+OD^2}{2}\left(4\right)\)
Cộng (1); (2); (3) và (4) theo vế:
\(2.\left(S_{BOC}+S_{AOB}+S_{DOC}+S_{AOD}\right)\le\frac{2.\left(OA^2+OB^2+OC^2+OD^2\right)}{2}\)
\(\Rightarrow2S\le OA^2+OB^2+OC^2+OD^2\)=> ĐPCM.
\(2.S_{BOC}\le OC.OB\). Dấu "=" xảy ra <=> OC vuông góc với OB
\(OC.OB\le\frac{OC^2+OB^2}{2}\). Dấu "=" xảy ra <=> OC=OB
Suy ra \(2.S_{BOC}\le\frac{OC^2+OB^2}{2}\). Dấu "=" xảy ra <=> \(\Delta\)BOC vuông cân tại O
Tương tự với các tam giác AOB; AOD; DOC.
Vậy dấu "=" xảy ra <=> Tứ giác ABCD là hình vuông và O là tâm của hình vuông này.
Cho tứ giác ABCD, O là một điểm nằm trong tứ giác đó. Xác định vị trí của M để OA+OB+OC+OD nhỏ nhất.
cậu tự vẽ hình nhé tớ giải cho :
ta có : \(OA+OC\ge AC\)
\(OB+OD\ge BD\)
=> \(OA+OB+OC+OD\ge AC+BD\)
Min của OA+OB+OC+OD là AC+BD <=> O là giao điểm của 2 đường chéo