Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(MA+MC\ge AC\)
Dấu " = " xảy ra khi M thuộc AC
Ta có :\(MB+MD\ge BD\)
\(\Rightarrow MA+MC+MB+MD\ge AC+BD\)
Dấu " = " xảy ra khi M là giao điểm của AC, BD
Vậy khi M là giao điểm của AC và BD thì MA+MB+MC+MD nhỏ nhất
Theo đề bài ta có :\(MA+MC\ge AC\)
Dấu " = " xảy ra khi và chỉ khi \(M\in AC\)
Theo đề bài có : \(MB+MD\ge BD\)
Dấu " =" xảy ra khi và chỉ khi \(M\in BD\)
\(\Rightarrow MA+MB+MC+MD\ge AC+BD\)
Vậy \(MA+MB+MC+MD\)nhỏ nhất sẽ bằng \(AC+BD\)
\(\Leftrightarrow\)M là giao điểm của 2 đường chéo AC và BD .
Gọi BH là đường cao của ∆ABO
Ta có 2SAOB = OA . BH
Nhưng BH ≤ BO nên 2SAOB ≤ OA . OB
mà OA.OB
Do đó 2SAOB
Dấu “=” xảy ra OA OB và OA = OB
Chứng minh tương tự ta có:
2SBOC ; 2SCOD
2SAOD
Vậy 2S = 2(SAOB + SBOC + SCOD + SDOA) ≤
Hay 2S ≤ OA2 + OB2 + OC2 + OD2
Dấu bằng xẩy ra khi và chỉ khi OA = OB = OC = OD
và là hình vuông tâm O.
cậu tự vẽ hình nhé tớ giải cho :
ta có : \(OA+OC\ge AC\)
\(OB+OD\ge BD\)
=> \(OA+OB+OC+OD\ge AC+BD\)
Min của OA+OB+OC+OD là AC+BD <=> O là giao điểm của 2 đường chéo
cảm ơn nhé Luffy 123