Tính giá trị biểu thức:
A=\(\dfrac{-5x}{21}\)+\(\dfrac{-5y}{21}\)+\(\dfrac{-5z}{21}\)biết x+y=-z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{-5x}{21}\)+ \(\frac{-5y}{21}\)+ \(\frac{-5x}{21}\)
= \(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5x\right)}{21}\)
vì x + y là số dõi của z
=> x + y + z = 0
=> \(\frac{5.\left(x+y+z\right)}{21}\)
= \(\frac{-5}{21}\). 0 = 0
=> A = 0
hok tốt !
Thay -z=x+y vào biểu thức A ta có A=-5x/21+(-5y/21)+[5(x+y)/21] =>-5x/21 +(-5y/21)+(5x+5y)/21=>-5x/21+(-5y/21)+5x/21+5y/21 => A = 0
Theo đầu bài ta có:
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x+-5y+-5z}{21}\)
\(=\frac{-5\left(x+y+z\right)}{21}\)
\(=\frac{-5\left(-z+z\right)}{21}\)
\(=\frac{-5\cdot0}{21}\)
\(=\frac{0}{21}=0\)
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
=>\(A=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}\)
=>\(A=\frac{\left(-5\right)\left(x+y+z\right)}{21}\)
=>\(A=\frac{\left(-5\right)\left(-z+z\right)}{21}\)
=>\(A=\frac{\left(-5\right).0}{21}\)
=>\(A=\frac{0}{21}\)
=>A=0
\(\dfrac{-5x}{21}+\dfrac{-5y}{21}+\dfrac{-5z}{21}=\dfrac{-5x-5y-5z}{21}\)
= \(\dfrac{-5\left(x+y\right)-5z}{21}=\dfrac{-5\left(-z\right)-5z}{21}=\dfrac{5z-5z}{21}=\dfrac{0}{21}=0\)
\(A=\dfrac{-5x}{21}+\dfrac{-5y}{21}+\dfrac{-5z}{21}\)
\(=\dfrac{-5x-5y-5z}{21}\\ =\dfrac{-5\left(x+y\right)-5z}{21}\\ =\dfrac{-5\cdot\left(-z\right)-5z}{21}\\ =\dfrac{5z-5z}{21}\\ =\dfrac{0}{21}\\ =0\)
`Answer:`
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x-5y-5z}{21}\)
\(=\frac{-5\left(x+y\right)-5z}{21}\)
\(=\frac{-5\left(-z\right)-5z}{21}\)
\(=\frac{5z-5z}{21}\)
\(=\frac{0}{21}\)
\(=0\)
\(A=\dfrac{-5x}{21}+\dfrac{-5y}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5x+\left(-5y\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5\cdot\left(x+y\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5\cdot\left(-z\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{5z}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{5z+\left(-5z\right)}{21}=\dfrac{0}{21}=0\)
Vậy \(A=0\)
AI NHANH MÌNH TICK CHO