Cho đường thẳng xy song song với x'y'. Az là tia phân giá của góc xAB và Bz' là tia phân giác của góc y'BA.
Hỏi tia Az và Bz' có song song với nhau không vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) vì góc xAy và góc xBy là hai góc đồng vị (đều =40độ)
suy ra :Ay // Bz
1.
a.Hai góc xBz và xAy là hai góc đồng vị.Nếu \(\widehat{xBz}=40^0\)thì \(\widehat{xBz}=\widehat{xAy}\)nên hai đường thẳng Bz và Ay song song
b. AM,BN lần lượt là tia p/g của góc xAy và xBz nên \(\widehat{xAm}=\frac{1}{2}\widehat{xAy}=20^0,\widehat{xBN}=\frac{1}{2}\widehat{xBz}=20^0\), suy ra \(\widehat{xAM}=\widehat{xBN}\)
Hai góc này ở vị trí đồng vị của hai đường thẳng AM và BN cắt đường thẳng Bx,do đó \(AM//BN\)
2. Câu hỏi của Cao Thi Khanh Chi - Toán lớp 8 - Học toán với OnlineMath
Tham khảo nhé
A) cm ZZ'\\OY
vẽ tia a sao cho a\\oy và đi qua OX
ta có aAO+YOA=1800
aAO+1500=1800
aAO=1800-1500
aAO=300
a\\Oy
MÀ aAO=OAZ=300 => aAO VÀ OAZ LÀ 1 => ZZ'\\Oy
B) ta có O1=A1 ( SO LE TRONG)
O=A=1500 => A2=O2=750 ( VÌ SL TRONG VÀ Om, AN là các tia phân giác của góc xOy và OAz')
ta có O1+A2+N=O2+A1+M=1800 => N=M => \(\Delta AON=\Delta AOM\Rightarrow O_2=A_2\Rightarrow OM\backslash\AN\)