K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 7

Lời giải:

$A=x^2+y^2-2x+4y+2015$

$A=(x^2-2x+1)+(y^2+4y+4)+2010$

$=(x-1)^2+(y+2)^2+2010\geq 2010$

$\Rightarrow A_{\min}=2010$

Giá trị này đạt tại $x-1=y+2=0$

$\Leftrightarrow x=1; y=-2$

24 tháng 12 2019

biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

7 tháng 6 2016

\(P=8x^2+2y^2+4xy-2x+4y+2015=2\cdot\left(y^2+2xy+2y+4x^2-x\right)+2015\)

\(=2\cdot\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2-\left(x+1\right)^2+4x^2-x\right)+2015\)

\(=2\cdot\left[\left(y+\left(x+1\right)\right)^2+3x^2-3x-1\right]+2015\)

\(=2\cdot\left[\left(y+x+1\right)^2+3\left(x^2-2x\cdot\frac{1}{2}+\frac{1}{4}\right)-1-\frac{3}{4}\right]+2015\)

\(=2\cdot\left[\left(y+x+1\right)^2+3\cdot\left(x-\frac{1}{2}\right)^2\right]+2015-\frac{7}{2}\)

\(=2\cdot\left(x+y+1\right)^2+6\left(x-\frac{1}{2}\right)^2+2011\frac{1}{2}\)

Vậy GTNN của P = 2011,5. Xảy ra khi x=0,5 và y=-1,5.

11 tháng 10 2019

\(A=x^2-2x+y^2-4y+6\)\(6\)

    \(=x^2-2x+1+y^2-4y+4+1\)

     \(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

Do đó GTNN của A là 1 khi và chỉ khi:\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy ...

16 tháng 12 2020

Ta có:

\(A=x^2+y^2+xy-2x-4y+2016\\ =\left(x+\dfrac{y}{2}-1\right)^2+\dfrac{3}{2}\left(y-1\right)^2+\dfrac{4027}{2}\\ \ge\dfrac{4027}{2}\)

Dấu bằng xảy ra khi và chỉ khi: 

\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)

13 tháng 7 2019

x2 - 2x + y2 - 4y + 7 = (x2 - 2x + 1) + ( y2 - 4y + 4) + 2 = (x - 1)2 + (y - 2)2 + 2

Vì (x - 1)2 ≥ 0 \(\forall\)x

    (y - 2)2 ≥ 0 \(\forall\)x

=> (x - 1)2 + (y - 2)2 ≥ 0 \(\forall\)x

=> (x - 1)2 + (y - 2)2 + 2  ≥ 2 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy GTNN của x2 - 2x + y2 - 4y +7 = 2 khi x = 1; y = 2

5 tháng 9 2020

Đặt \(A=x^2-2x+y^2-4y+7\)

\(\Rightarrow A=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x,y\)

hay \(A\ge2\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy \(minA=2\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)