K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2023

\(M=6x^2+4y^2+6xy+\left(xy+\dfrac{4x}{y}\right)+\left(3xy+\dfrac{3y}{x}\right)+2022\)

\(M\ge3x^2+y^2+3\left(x+y\right)^2+2\sqrt{\dfrac{4x^2y}{y}}+2\sqrt{\dfrac{9xy^2}{x}}+2022\)

\(M\ge3\left(x^2+1\right)+\left(y^2+4\right)+3\left(x+y\right)^2+4x+6y+2015\)

\(M\ge6x+4y+3\left(x+y\right)^2+4x+6y+2015\)

\(M\ge3\left(x+y\right)^2+10\left(x+y\right)+2015\ge3.3^2+10.3+2015=2072\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

9 tháng 12 2017

\(x^2+2xy+4x+4y+3y^2+3=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)

\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)

Do  \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+2\le1\)

\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)

\(\Leftrightarrow2014\le x+y+2017\le2016\)

Hay \(2014\le B\le2016\)

24 tháng 12 2017

Bạn Đinh Đức Hùng cho tớ hỏi được không ạ ?

Cái chỗ do Vp = 1- 2y^2 nên ...

Bên trên là dương 1 sao ở đưới lại là -1 ạ? Tớ chưa hiểu chỗ này, mong cậu giảng cho tớ :< pls !

a: M=2(-2x-3xy^2+1)-3xy^2+1

=-4x-6xy^2+2-3xy^2+1

=-4x-9xy^2+3

b: Thay x=-2 và y=3 vào M, ta được:

M=2*(-2)-3*(-2)*3^2+1

=-4+1+6*9

=54-3

=51

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

30 tháng 8 2020

A = x2 - 10x + 12

= ( x2 - 10x + 25 ) - 13

= ( x - 5 )2 - 13

( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 13 ≥ -13

Đẳng thức xảy ra <=> x - 5 = 0 => x = 5

=> MinA = -13 <=> x = 5

B = 6y2 + 4y - 1

= 6( y2 + 2/3y + 1/9 ) - 5/3

= 6( y + 1/3 )2 - 5/3

6( y + 1/3 )2 ≥ 0 ∀ x => 6( y + 1/3 )2 - 5/3 ≥ -5/3

Đẳng thức xảy ra <=> y + 1/3 = 0 => y = -1/3

=> MinB = -5/3 <=> y = -1/3

C = x2 + y2 - 2x - 6y - 1

= ( x2 - 2x + 1 ) + ( y2 - 6y + 9 ) - 11

= ( x - 1 )2 + ( y - 3 )2 - 11

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y-3\right)^2-11\ge-11\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

=> MinC = -11 <=> x = 1 ; y = 3

D = 2x2 + 3y2 - x - 3y + 5

= 2( x2 - 1/2x + 1/16 ) + 3( y2 - y + 1/4 ) + 33/8

= 2( x - 1/4 )2 + 3( y - 1/2 )2 + 33/8

\(\hept{\begin{cases}2\left(x-\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x-\frac{1}{4}\right)^2+3\left(y-\frac{1}{2}\right)^2+\frac{33}{8}\ge\frac{33}{8}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{4}=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{1}{2}\end{cases}}\)

=> MinD = 33/8 <=> x = 1/4 ; y = 1/2

a) Ta có:

\(A=2x^2-3x-7+4y^2-8y=2\left(x^2-2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\left(2y\right)^2-2.2y.2+4-\dfrac{97}{8}\)\(\Leftrightarrow A=2\left(x-\dfrac{3}{4}\right)^2+\left(2y-2\right)^2-\dfrac{97}{8}\ge0+0-\dfrac{97}{8}=\dfrac{-97}{8}\)

Vậy \(A_{min}=\dfrac{-97}{8}\), đạt được khi và chỉ khi \(x=\dfrac{3}{4},y=1\)

7 tháng 9 2021

out play nó

7 tháng 9 2021

sợ quá 

sợ quá

sợ quá 

sợ quá

sợ quá sợ quá

sợ quá sợ quá

sợ quá 

sợ quá

sợ quá sợ quá

sợ quá