Cho số hữu tỷ x thỏa mãn x^2 + 2x là một số nguyên. Chứng minh x là một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{a}{b};a,b>0;\left(a,b\right)=1\).
\(\frac{5}{x}=\frac{5b}{a}\inℤ\Rightarrow a\inƯ\left(5\right)=\left\{1,5\right\}\).(vì \(\left(a,b\right)=1\))
Với \(a=1\):
\(2x=\frac{2}{b}\inℤ\Rightarrow b\inƯ\left(2\right)=\left\{1,2\right\}\)
Thử lại \(x=1,x=\frac{1}{2}\)đều thỏa mãn.
Với \(a=5\):
\(2x=\frac{10}{b}\Rightarrow b\inƯ\left(10\right)=\left\{1,2,5,10\right\}\)
\(\left(a,b\right)=1\)nên \(b\in\left\{1,2\right\}\).
Thử lại \(x=5,x=\frac{5}{2}\)đều thỏa mãn.
Vậy \(x\in\left\{1,\frac{1}{2},5,\frac{5}{2}\right\}\).
2x và 5/x
2x luôn là số nguyên
Vậy để thỏa đề thì 5/x phải là số nguyên
=> 5 chia hết cho x
x thuộc ước của 5
mà x > 0
Vậy x = 1 hoặc x = 5
Ta có: \(x^2-2\in Z,-2\in Z\)
\(\Rightarrow x^2\in Z\Rightarrow x\in Z\)
Vì \(x^2-2\) là số nguyên
mà 2 là số nguyên
nên \(x^2\) là số nguyên
hay x là số nguyên
x^2 + 2 nguyên mà 2 nguyên suy ra x^2 nguyên mà x hữu tỉ nên nếu x không nguyên thì x^2 không nguyên ( cái này là do căn 2 của 1 số nguyên là 1 số nguyên hoặc 1 số vô tỉ ) nên x nguyên.
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ
Với \(x=0\)hiển nhiên đúng. Với \(x\ne0\):
Đặt \(x=\frac{a}{b};\left(\left|a\right|,\left|b\right|\right)=1\).
\(x^2+2x=\frac{a^2}{b^2}+\frac{2a}{b}=\frac{a^2+2ab}{b^2}=\frac{a\left(a+2b\right)}{b^2}\)
mà \(\left(a,b\right)=1\Rightarrow a+2b⋮b^2\Rightarrow a=kb^2-2b,k\inℤ\)
khi đó \(a⋮b\).
Suy ra \(x\)là một số nguyên.