Cho ham so y=f(x)=5x .cmr
Voi x1<x2 thi f(x1)>f(x2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do m2+2m+3=(m+1)2+2>0; ∀m
⇒ Hàm đồng biến khi x>0và nghịch biến khi x<0
Do m2+2m+3=(m+1)2+2>0; ∀m
⇒ Hàm đồng biến khi x>0và nghịch biến khi x<0
Hàm số f(x) đâu có y,z (y là tên hàm số rồi còn gì)??
ĐK: \(x\inℤ\)
TA có: \(y=f\left(x\right)=ax^2+bx+c⋮5\)
Vậy \(f\left(x\right)=ax^2+bx+c\) có dạng \(5k\) (k nguyên)
Nếu \(x⋮5\Rightarrow x\)có dạng \(5t\)
Thay vào,ta có: \(f\left(x\right)=25at^2+5bt+c=5t\left(5at+b\right)+c=5k\) (1)
Suy ra \(c=5k-5t\left(5at+b\right)=5\left[k-t\left(5at+b\right)\right]\) (2)
Thay (2) và (1) suy ra nếu x chia hết cho 5 thì f(x) chia hết cho 5 (thỏa mãn)
Nếu \(x⋮̸5\Rightarrow x\) có dạng 5t + 1
Thay vào và chứng minh tương tự để suy ra nếu x không chia hết cho 5 thì f(x) không chia hết cho 5 (trái với giả thiết)
Từ đó suy ra đpcm
Có f(x1-x2) = k.(x1-x2)=kx1-kx2
f(x1)-f(x2)=kx1-kx2
=>f(x1-x2) = f(x1)-f(x2) (=kx1-kx2)
\(f\left(-2\right)+f\left(-4\right)=-2\left(3m-2\right)+\left(-4\right)\left(3m-2\right)=-6\left(3m-2\right)\)
\(6\cdot f\left(-x\right)=6\cdot\left(-1\right)\cdot\left(3m-2\right)=-6\left(3m-2\right)\)
Do đó: f(-2)+f(-4)=6f(-x)
Thay M(2,6), N(-1,-3) vào hàm số y=3x
Ta được ngiệm x,y của M và N đúng với hàm số => thẳng hàng (1)
Còn vế cuối thì thay x=0,y=0 và hàm số f(x) ta thỏa mãn 0=0x => O thẳng hàng (2)
Từ 1 và 2 => ĐPCM
c/m:
\(f\left(x_1\right)-f\left(x_2\right)=5x_1-5x_2=5\left(x_1-x_2\right)< 0\) do x1<x2
Vậy ;\(f\left(x_1\right)-f\left(x_2\right)< 0\Rightarrow f\left(x_1\right)< f\left(x_2\right)\Rightarrow\)Điều phải chứng minh ngược lại.