Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x, y, z t/m x, y z thuộc z
x+y+z=xyz
Giải:
Giả sử: 1<=x<=y<=z.Khi đó từ phương trình suy ra xyz=x+y+z<=3z suy ra xy <= 3
Suy ra: x.y=\(\left\{1,2,3\right\}\)
Nếu x.y=1 thì x=y=1 suy ra 2+z+z (vô lý )
Nếu x.y=2 suy ra x=1,y=2,z=3
Nếu x.y=3 suy ra x=1,y=3,z=2 <y (trái với giả sử)
Vậy x,y,z là hoán vị của (1;2;3)
cho x,y,z thuộc Q tìm x,y,z biết xyz>x+y+z
Tìm x,y,z thuộc N* sao cho xyz-x-y-z=5
không mất tính tổng quát, giả sử \(0< a\le b\le c\in N\)
\(xyz=x+y+z+5\le3z+5\Leftrightarrow xy\le3+\dfrac{5}{z}\le8\)
mà x,y thuộc N* \(\Rightarrow xy\in\left\{1;2;3;4;5;6;7;8\right\}\)
...bla bla
Tìm x,y,z thuộc Z biết:
xyz=x+2015
xyz=y+2017
xyz=z+2019
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
tìm x,y,z thuộc Z biết
xyz=y+2015
xyz=x+2017
Tìm x+y+z (x,y,z thuộc N* biết: x+y+z=xyz
4(x+y+z)=xyz
cho x,y,z thuộc R thỏa xyz=x+y+z
tìm Min P = \(\left(x-1\right)y^2+\left(y-1\right)z^2+\left(z-1\right)x^2\)
từ bỏ :(((
Tìm x,y,z thuộc Z sao cho:x+y+z=xyz
Giải:
Giả sử: 1<=x<=y<=z.Khi đó từ phương trình suy ra xyz=x+y+z<=3z suy ra xy <= 3
Suy ra: x.y=\(\left\{1,2,3\right\}\)
Nếu x.y=1 thì x=y=1 suy ra 2+z+z (vô lý )
Nếu x.y=2 suy ra x=1,y=2,z=3
Nếu x.y=3 suy ra x=1,y=3,z=2 <y (trái với giả sử)
Vậy x,y,z là hoán vị của (1;2;3)