K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

\(\begin{array}{l}A{B^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA} \\ = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} ) = \overrightarrow {AB} (\overrightarrow {AC}  + \overrightarrow {CA} ) = \overrightarrow {AB} .\overrightarrow 0  = 0.\end{array}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(AH \bot CB \Rightarrow (\overrightarrow {AH} ,\overrightarrow {CB} ) = {90^o} \Leftrightarrow \cos (\overrightarrow {AH} ,\overrightarrow {CB} ) = 0 \Leftrightarrow \overrightarrow {AH} .\overrightarrow {CB}  = 0\)

a) \(\overrightarrow {AB} .\overrightarrow {AH}  - \overrightarrow {AC} .\overrightarrow {AH}  = (\overrightarrow {AB}  - \overrightarrow {AC} ).\overrightarrow {AH}  = \overrightarrow {CB} .\overrightarrow {AH}  = 0\)

\( \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AH}  = \overrightarrow {AC} .\overrightarrow {AH} \)

b)  \(\overrightarrow {AB} .\overrightarrow {BC}  - \overrightarrow {HB} .\overrightarrow {BC}  = (\overrightarrow {AB}  - \overrightarrow {HB} ).\overrightarrow {BC}  = (\overrightarrow {AB}  + \overrightarrow {BH} ).\overrightarrow {BC}  = \overrightarrow {AH} .\overrightarrow {BC}  = 0\)

\( \Leftrightarrow \overrightarrow {AB} .\overrightarrow {BC}  = \overrightarrow {HB} .\overrightarrow {BC} \)

15 tháng 12 2020

Có vẻ không đúng.

Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow M\equiv B\) (Vô lí)

15 tháng 12 2020

Đề đúng đó bạn ơi Hồng Phúc CTV

Đây là đề thi học kì năm ngoái của trường mình mà.

17 tháng 12 2020

a, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{BC}^2\)

\(\Leftrightarrow AC^2+AB^2-2\overrightarrow{AB}.\overrightarrow{AC}=BC^2\)

\(\Leftrightarrow2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}=\dfrac{5^2+8^2-7^2}{2}=20\)

b, \(2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-BC^2=CA^2\)

\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2}{2}=\dfrac{8^2}{2}=32\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

a) 

\(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\)

\(\Rightarrow (\overrightarrow{AC}-\overrightarrow{AB})^2=\overrightarrow{BC}^2\Leftrightarrow AB^2+AC^2-2\overrightarrow{AC}.\overrightarrow{AB}=BC^2\)

\(\Leftrightarrow 2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\) (đpcm)

Ta có:

\(\overrightarrow{AB}.\overrightarrow{AC}=\frac{AB^2+AC^2-BC^2}{2}=\frac{5^2+8^2-7^2}{2}=20\)

\(\cos \angle A=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\frac{20}{5.8}=\frac{1}{2}\)

\(\Rightarrow \angle A=60^0\)

b) 

Tương tự phần a, \(\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-AB^2}{2}=\frac{8^2+7^2-5^2}{2}=44\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

 \(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DA} } \right)\\ = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow {AA}  = \overrightarrow 0 .\end{array}\)

b)

\(\overrightarrow {AC}  - \overrightarrow {AD}  = \overrightarrow {DC} \) và \(\overrightarrow {BC}  - \overrightarrow {BD}  = \overrightarrow {DC} \)

\( \Rightarrow \overrightarrow {AC}  - \overrightarrow {AD}  = \overrightarrow {BC}  - \overrightarrow {BD} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \( AH \bot BC\) và \(BH \bot CA\)

\( \Rightarrow \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = 0\) . Do đó \(\overrightarrow {AH} .\overrightarrow {BC}  = \overrightarrow 0 \)

Tương tự suy ra \(\overrightarrow {BH} .\overrightarrow {CA}  = \overrightarrow 0 \).

b) Gọi H có tọa độ (x; y)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH}  = (x - ( - 1);y - 2) = (x + 1;y - 2)\\\overrightarrow {BH}  = (x - 8;y - ( - 1)) = (x - 8;y + 1)\end{array} \right.\)

Ta có: \(\overrightarrow {AH} .\overrightarrow {BC}  = \overrightarrow 0 \) và \(\overrightarrow {BC}  = (8 - 8;8 - ( - 1)) = (0;9)\)

\((x + 1).0 + (y - 2).9 = 0 \Leftrightarrow 9.(y - 2) = 0 \Leftrightarrow y = 2.\)

Lại có: \(\overrightarrow {BH} .\overrightarrow {CA}  = \overrightarrow 0 \) và \(\overrightarrow {CA}  = ( - 1 - 8;2 - 8) = ( - 9; - 6)\)

\(\begin{array}{l}(x - 8).( - 9) + (y + 1).( - 6) = 0\\ \Leftrightarrow  - 9x + 72 + 3.( - 6) = 0\\ \Leftrightarrow  - 9x + 54 = 0\\ \Leftrightarrow x = 6.\end{array}\)

Vậy H có tọa độ (6; 2)

c) Ta có: \(\overrightarrow {AB}  = (8 - ( - 1); - 1 - 2) = (9; - 3)\)\( \Rightarrow AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{9^2} + {{( - 3)}^2}}  = 3\sqrt {10} \)

Và  \(\overrightarrow {BC}  = (0;9) \Rightarrow BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{0^2} + {9^2}}  = 9\);

\(\overrightarrow {CA}  = ( - 9; - 6)\)\( \Rightarrow AC = \left| {\overrightarrow {CA} } \right| = \sqrt {{{( - 9)}^2} + {{( - 6)}^2}}  = 3\sqrt {13} .\)

Áp dụng định lí cosin cho tam giác ABC, ta có:

\(\cos \widehat A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {3\sqrt {13} } \right)}^2} + {{\left( {3\sqrt {10} } \right)}^2} - {{\left( 9 \right)}^2}}}{{2.3\sqrt {13} .3\sqrt {10} }} \approx 0,614\)\( \Rightarrow \widehat A \approx 52,{125^o}\)

\(\cos \widehat B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( 9 \right)}^2} + {{\left( {3\sqrt {10} } \right)}^2} - {{\left( {3\sqrt {13} } \right)}^2}}}{{2.9.3\sqrt {10} }} = \frac{{\sqrt {10} }}{{10}}\)\( \Rightarrow \widehat B \approx 71,{565^o}\)

\( \Rightarrow \widehat C \approx 56,{31^o}\)

Vậy tam giác ABC có: \(a = 9;b = 3\sqrt {13} ;c = 3\sqrt {10} \); \(\widehat A \approx 52,{125^o};\widehat B \approx 71,{565^o};\widehat C \approx 56,{31^o}.\)

12 tháng 5 2017


VT = \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AD}\).
VP = \(\overrightarrow{AE}-\overrightarrow{DE}=\overrightarrow{AE}+\overrightarrow{ED}=\overrightarrow{AD}\).
VT = VP (đpcm).