K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

a/

\(R_{3,4,5}=R_5+\frac{R_3R_4}{R_3+R_4}=6+\frac{10.15}{10+15}=12\Omega.\)

\(R_{2,3,4,5}=\frac{R_2R_{3,4,5}}{R_2+R_{3,4,5}}=\frac{6.12}{6+12}=4\Omega\)

\(R_{tm}=R_1+R_{2,3,4,5}=4+4=8\Omega\)

\(I_{tm}=\frac{U}{R_{tm}}=\frac{18}{8}=2,25A\)

\(U_{R_1}=I_{tm}.R_1=2,25.4=9V\)

\(U_{AB}=U-U_{R_1}=18-9=9V\)

\(I_{R_5}=\frac{U_{AB}}{R_{3,4,5}}=\frac{9}{12}=0,75A\)

\(U_{R_5}=I_5.R_5=0,75.6=4,5V\)

\(U_{R_3}=U_{R_4}=U_{AB}-U_{R_5}=9-4,5=4,5V\)

\(I_{R_3}=\frac{U_{R_3}}{R_3}=\frac{4,5}{10}=0,45A\) Vậy số chỉ trên Ampe kế A là 0,45A

\(I_{R_4}=I_{R_5}-I_{R_3}=0,75-0,45=0,35A\)

\(P_{R_4}=U_{R_4}.I_{R_4}=4,5.0,35=1,575W\)

b/

\(U_{R_3}=U_{R_4}=I_{R_3}.R_3=0,6.10=6V\)

\(I_{R_4}=\frac{U_{R_4}}{R_4}=\frac{6}{15}=0,4A\)

\(I_{R_5}=I_{R_3}+I_{R_4}=0,6+0,4=1A\)

\(U_{AB}=I_{R_5}.R_{3,4,5}=1.12=12V\)

\(U=I_{R_1}.R_1+U_{AB}\Rightarrow I_{R_1}=\frac{U-U_{AB}}{R_1}=\frac{18-12}{4}=1,5A\)

\(I_{R_2}=I_{R_1}-I_{R_5}=1,5-1=0,5A\)

\(R_2=\frac{U_{AB}}{I_{R_2}}=\frac{12}{0,5}=24\Omega\)

a: Thay a=-2 vào pt, ta được:

\(-2x^2-2\cdot\left(-2-1\right)x-2+1=0\)

\(\Leftrightarrow-2x^2+6x-1=0\)

\(\Leftrightarrow2x^2-6x+1=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot2\cdot1=36-8=28>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{7}}{2}=3-\sqrt{7}\\x_2=3+\sqrt{7}\end{matrix}\right.\)

b: Để phương trình có hai nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}\left(-2a+2\right)^2-4a\left(a+1\right)>0\\a< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a^2-8a+4-4a^2-4a>0\\a< >0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-12a>-4\\a< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a< >0\\a< \dfrac{1}{3}\end{matrix}\right.\)

 

a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

\(M=\left(\dfrac{x+3}{x-3}-\dfrac{18}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-3}{x+3}\right):\dfrac{x+3-x-1}{x+3}\)

\(=\dfrac{x^2+6x+9-18+x^2-6x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{2}\)

\(=\dfrac{2x^2}{x-3}\cdot\dfrac{1}{2}=\dfrac{x^2}{x-3}\)

b: Để M nguyên thì \(x^2-9+9⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(x\in\left\{4;2;6;0;12;-6\right\}\)

14 tháng 6 2021

\(A=\dfrac{2\sqrt{x}+17}{\sqrt{x+5}}=\dfrac{2\sqrt{x}+10}{\sqrt{x}+5}+\dfrac{7}{\sqrt{x}+5}=2+\dfrac{7}{\sqrt{x}+5}\) 

Để \(A\) ∈ \(Z\) thì \(\dfrac{7}{\sqrt{x}+5}\) phải ∈ \(Z\)

=> \(\sqrt{x}+5\) ∈ \(Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

# Với \(\sqrt{x}+5=-7=>\sqrt{x}=-12\)(Loại)

#Với \(\sqrt{x}+5=-1=>\sqrt{x}=-6\)(Loại)

#Với \(\sqrt{x}+5=1=>\sqrt{x}=-4\left(Loại\right)\)

#Với \(\sqrt{x}+5=7=>\sqrt{x}=2< =>x=4\left(Nhận\right)\)

Vậy \(x=4\) thì \(A\)\(Z\)

28 tháng 9 2021

\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}3\)

\(Ta\) \(Có\) : \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}=\sqrt[3]{\dfrac{a^6}{ab.ab\left(a^2-ab+b^2\right)}}=\dfrac{a^2}{\sqrt[3]{ab.ab.\left(a^2-ab+b^2\right)}}\) 

\(Áp\) \(dụng\) \(bđt\) \(AM-GM\) 

\(\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}\text{≤}\)  \(\dfrac{ab+ab+a^2-ab+b^2}{3}\) 

\(=>\dfrac{a^2}{\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}}\) \(\text{≥}\) \(\dfrac{3a^2}{a^2+ab+b^2}\) \(Hay\) \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}\text{≥}\dfrac{3a^2}{a^2+ab+b^2}\)

Tương tự ta cũng có : 

\(\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\text{≥}\dfrac{3b^2}{b^2+bc+c^2}\) 

\(\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+a^2\right)}}\text{≥}\dfrac{3c^2}{a^2+ac+c^2}\)

\(=>\text{​​}\text{​​}\)\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\)  \(\text{≥}\) \(3\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) 

Cần c/m \(\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) ≥ \(1\) 

Ta có : \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\) 

\(< =>3a^2\text{≥}a^2+ab+b^2\) \(< =>2a^2-b\left(a+b\right)\text{≥}0\) (1)

Lại có : \(a^2\text{≥}-b\left(a+b\right)\) (2)

Từ (1) và (2) => \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\)

Tương tự ta cũng có :

 \(\dfrac{b^2}{b^2+bc+c^2}\text{≥}\dfrac{1}{3}\) 

\(\dfrac{c^2}{a^2+ac+c^2}\text{≥}\dfrac{1}{3}\)

Do đó \(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\text{≥}1\)

Suy ra :  \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}\) \(3\) 

Đẳng thức xảy ra <=> \(a=b=c=1\)

 

 

 

10 tháng 6 2021

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

8 tháng 11 2023

bài giải

1 người xây trong số ngày là:

6 x 8 = 48 ( ngày )

làm trong 4 ngày cần số người là:

48 : 4 = 12 ( người )

vậy 4 ngày thêm số người là:

12 - 8 = 4 ( người )

đáp số : 4 người

7 tháng 11 2023

muốn xây xong 1 bức tường trong 6 ngày cần 8 người. vậy 4 ngày cần thêm bao nhiêu người?

1) Xét ΔAMB và ΔAMC có 

AB=AC(ΔBAC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔAMB=ΔAMC(c-c-c)

Suy ra: \(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

hay AM\(\perp\)BC

Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

3) Xét ΔABC có 

H là trung điểm của AB(gt)

K là trung điểm của AC(gt)

Do đó: HK là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: HK//BC(Định lí 2 về đường trung bình của tam giác)

Câu 2: 

a) Xét tứ giác KPIQ có 

\(\widehat{KPI}\) và \(\widehat{KQI}\) là hai góc đối

\(\widehat{KPI}+\widehat{KQI}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KPIQ là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)