Giá trị nhỏ nhất của biểu thức \(A=\left|2017-2x\right|+\left|2015-2x\right|\) là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x\right)^2-1+2017\)
\(=\left(2x^2-3x\right)^2+2016\ge2016\)
\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(A_{min}=2016\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Ta có \(A=\left|2x-2015\right|+\left|2017-2x\right|+\left|x-1008\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
\(A\ge\left|2x-2015+2017-2x\right|+\left|x-1008\right|=2+\left|x-1008\right|\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2015\right)\left(2x-2017\right)\ge0\) và \(\left|x-1008\right|=0\)
\(\Rightarrow\dfrac{2015}{2}\le x\le\dfrac{2017}{2}\) và \(x=1008\) \(\Rightarrow x=1008\) (TM)
Vậy GTNN của A là 2 tại \(x=1008\)
A= / 2x - 2 / + / 2015 -2x/ >/ / 2x-2 + 2015 -2x / = 2013
A nhornhat = 2013 khi (2x-2).(2015-2x) >/0 => 1</ x </ 2015
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
Ta có: \(C=\left|2x-7\right|+\left|2x-5\right|+18\)
\(=\left|2x-7\right|+\left|5-2x\right|+18\ge\left|2x-7+5-2x\right|+18\)
\(\Leftrightarrow C\ge20\)
Vậy: Giá trị nhỏ nhất của C là 20 khi \(x=\dfrac{7}{2}\)
Ta có:\(C=\left|2x-7\right|+\left|2x-5\right|=-18\)
\(\left\{{}\begin{matrix}\left|2x-7\right|>0\\\left|2x-5\right|>0\end{matrix}\right.\)
mà \(\left|2x-7\right|+\left|2x-5\right|=-18\)
\(\Rightarrow\)Cmin\(\Leftrightarrow\)2x-7=0 suy ra x=7/2
2x-5=0 suy ra x=5/2
\(A=\left|2x-2\right|+\left|2x-2013\right|\)
\(A=\left|2x-2\right|+\left|2013-2x\right|\)
\(A\ge\left|2x-2+2013-2x\right|\)
\(A\ge2011\)Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)
A=|2x-2|+|2x-2013|
ta có |2x-2|=|2-2x|>hoặc=2-2x
. |2x-2013|>hoặc=2x-2013
=) A> hoặc = 2-2x+2x-2013
A> hoặc = -2011
Có \(A=\left|2017-2x\right|+\left|2015-2x\right|=\left|2017-2x\right|+\left|2x-2015\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|2017-2x+2x-2015\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi \(2017-2x\ge0;2x-2015\ge0\)
\(\Rightarrow x\le1008,5;x\ge1007,5\)
Vậy \(MIN_A=2\) khi \(1007,5\le x\le1008,5\)