Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
\(\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+\left|x-2016\right|\ge2\)
Dấu "=" khi \(\hept{\begin{cases}x-2016=0\\\left(x-2015\right)\left(2017-x\right)\ge0\end{cases}}\Leftrightarrow x=2016\)
\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)
\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)
\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)
\(A\ge\left|x-2016\right|+2\ge2\)
\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
\(A=\left|2014-x\right|+\left|2015-x\right|+2016-x\)
Ta xét 4 trường hợp xảy ra:
TH1: \(x< 2014\)
\(A=2014-x+2015-x+2016-x\)
\(=6045-3x>3\) ( Vì \(x< 2014\) ) (1)
TH2: \(2014\le x\le2015\)
\(A=x-2014+2015-x+2016-x\)
\(=2017-x>2\) ( Vì \(x< 2015\) ) (2)
TH3: \(2015\le x< 2016\)
\(A=x-2014+x-2015+2016-x\)
\(=x-2013\ge2\) ( Vì \(x\ge2015\) ) (3)
TH4: \(x< 2016\)
\(A=x-2014+x-2015+x-2016\)
\(=3x-6045>3\) ( Vì \(x>2016\) ) (4)
Từ (1), (2), (3) và (4) \(\Rightarrow A\ge2\)
Vậy A nhỏ nhất =2 khi x=2015.
Tìm giá trị nhỏ nhất của biểu thức
a) A= |x-2016| + |x+2017|
b) \(\frac{3}{\left(x+5\right)^2+2016}\)
a, \(\left|x-2016\right|+\left|x+2017\right|=\left|2016-x\right|+\left|x+2017\right|\)
\(\ge\left|2016-x+x+2017\right|=4033\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2016-x\right)\left(x+2017\right)\ge0\)
Bạn tự giải nốt nhé!
b. Ta có : \(\left(x+5\right)^2\ge0\) với mọi x
\(\Leftrightarrow\left(x+5\right)^2+2016\ge2016\) với mọi x
\(\Leftrightarrow\frac{1}{\left(x+5\right)^2+2016}\le\frac{1}{2016}\) với mọi x
\(\Leftrightarrow\frac{3}{\left(x+5\right)^2+2016}\le\frac{3}{2016}=\frac{1}{672}\) với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Bạn tự kết luận nha :)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(VT=\left|x-2017\right|+\left|x-2016\right|+\left|x-2015\right|+3\)
\(=\left|2017-x\right|+\left|x-2016\right|+\left|x-2015\right|+3\)
\(\ge\left|2017-x+x-2015\right|+0+3=5\)
Xảy ra khi \(\left\{{}\begin{matrix}2017-x\le0\\x-2016=0\\x-2015\ge0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\le2017\\x=2016\\x\ge2015\end{matrix}\right.\)\(\Rightarrow x=2016\)