K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

chịu but Merry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry ChristmasMerry Christmas

10 tháng 12 2019

Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)

<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)

<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)

(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0

( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y

nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y

Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

<=> \(x=y=\frac{1}{3}\)

10 tháng 12 2019

Làm tiếp:

Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P

ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)

NV
10 tháng 1 2021

\(x^3+y^3+3xy\left(x+y\right)+\dfrac{1}{27}-3xy\left(x+y\right)-xy=0\)

\(\Leftrightarrow\left(x+y\right)^3+\dfrac{1}{27}-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x+y+\dfrac{1}{3}\right)\left[\left(x+y\right)^2-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}\right]-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow x^2+y^2-xy-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-\dfrac{1}{3}\right)^2+\left(y-\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow x=y=\dfrac{1}{3}\Rightarrow P=...\)

\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)

\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)

Áp dụng BĐT cô si với các số dương x; y2 ; x4 ; yta được :

\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)

Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)

3 tháng 6 2021

đưa nó vế dạng a^3 + b^3 + c^3 = 3abc

3 tháng 6 2021

Ta có :

    \(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)

⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0

⇔  \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0

⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0

TH1 :

x + y + \(\dfrac{1}{3}\) = 0

⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)

TH2 :

\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)

⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0

⇒ \(x-\dfrac{1}{3}\) = 0       

    \(y-\dfrac{1}{3}\) = 0

    \(x-y\) = 0

⇔ x = y = \(\dfrac{1}{3}\)

Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :

   \(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)

\(\dfrac{1}{3}\) . 9

= 3

\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)

1 tháng 11 2016

Ta có: \(x+y=1\Rightarrow\left(x+y\right)^3=1\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Rightarrow x^3+y^3+3xy=1\)

\(\Rightarrow B=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)

\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\)

Áp dụng Bđt Cô-si ta có:

\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)

\(\Rightarrow B\ge4+2\sqrt{3}\)

Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)

\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)

1 tháng 11 2016

Làm sai rồi bạn

25 tháng 9 2019

x+xy+y+1=9

(x+1)(y+1)=9

áp dụng bđt ab<=(a+b)^2/4

->9<=(x+y+2)^2/4 -> x+y >=4

....