Số dư khi chia đa thức \(x^{2017}+2017\) cho đa thức \(x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
Tìm số dư khi chia đa thức \(x^{2018}-x^{2017}+17x+4\) cho \(x+1\).
Giải: Định lý Bê-du : số dư trong phép chia đa thức f(x) cho nhị thức x - a đúng bàng f(a).
Hệ quả: Nếu a là nghiệm của đa thức f(x) thì f(x) chia hết cho x-a.
(Bạn không nhất thiết phải nêu định lí trong bài làm, mình chỉ nêu ra cụ thể cho bạn hiểu)
Áp dụng định lí Bê-du, ta có:
f(a) = f(-1) = (-1)2018 - (-1)2017 + 17.(-1) + 4
= 1 - 1 - 17 + 4 = -13
Vậy số dư trong phép chia đa thức \(x^{2018}-x^{2017}+17x+4\) cho \(x+1\)
là -13.
Chúc bạn học tốt@@
Giải phương trình (3x/x^2+x+1)-(2x/x^2-x+1)=-7/3
Giải hộ mik vsKhi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2
=> đa thức dư có bậc cao nhất là 1
=> G/s: đa thức dư là: r(x) = a x + b
Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b
Vì f ( x ) chia ( x - 2 ) dư 2016
=> f ( 2 ) = 2016 => a.2 + b = 2016 (1)
Vì f(x ) chia ( x - 3 ) dư 2017
=> f ( 3) = 2017 => a.3 + b = 2017 (2)
Từ (1) ; (2) => a = 1; b = 2014
=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014
và đa thức dư là: x + 2014
\(P\left(x\right)=x^{2017}+x^2+1\)
\(=\left(x^{2017}-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^{2016}-1\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^{2016}-1\right]+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)A+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)A+\left(x^2+x+1\right)\)
\(A=\left(x^2+x+1\right)\left[x\left(x-1\right)A+1\right]⋮x^2+x+1\) (đpcm)
2016
Đặt P = x2017 + 2017
Theo định lý Bơ du, ta có: P(-1) = x2017 + 2017 = (-1)2017 + 2017 = 2016.
Vậy x2017 +2017 chia x + 1 dư 2016